a2 United States Patent

Samuelsson et al.

US009407932B2

US 9,407,932 B2
*Aug. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)
(86)

87

(65)

(60)

(1)

(52)

DECODING AND ENCODING OF PICTURES
OF A VIDEO SEQUENCE USING BUMPING
OF PICTURES FROM A DECODED PICTURE
BUFFER

Applicant: Telefonaktiebolaget L. M Ericsson
(publ), Stockholm (SE)

Inventors: Jonatan Samuelsson, Stockholm (SE);

Rickard Sjoberg, Stockholm (SE)

Telefonaktiebolaget LM Ericsson
(publ), Stockholm (SE)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 420 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/116,071

PCT Filed: Sep. 26,2013

PCT No.: PCT/EP2013/070093

§371 (o)D),

(2) Date: Now. 6, 2013

PCT Pub. No.: 'WO02014/049066

PCT Pub. Date: Apr. 3,2014
Prior Publication Data
US 2014/0161181 Al Jun. 12, 2014
Related U.S. Application Data

Provisional application No. 61/706,869, filed on Sep.
28, 2012.

Int. Cl.

HO04N 19/31 (2014.01)

HO4N 19/587 (2014.01)
(Continued)

U.S. CL

CPC ... HO4N 19/587 (2014.11); HO4N 19/152

(2014.11); HO4N 19/31 (2014.11);

(Continued)

(58) Field of Classification Search
CPC ... HO4N 19/00533; HO4N 19/152; HO4N
19/31; HO4N 19/423; HO4N 19/44; HO4AN
19/503; HO4N 19/587; HO4N 19/597; HO4N
19/70; HO4N 19/85
USPC ittt 375/240.12
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2010/0080290 Al
2010/0098163 Al

4/2010 Mehrotra
4/2010 Chiu et al.

(Continued)
FOREIGN PATENT DOCUMENTS

EP 2265028 A2 12/2010
RU 2374787 C2 11/2009
(Continued)
OTHER PUBLICATIONS

Bross et al., High efficiency video coding (HEVC) text specification
draft 8, 10th Meeting: Stockholm, SE, Jul. 11-20, 2012, JCTVC-
J1003_d7.*

(Continued)

Primary Examiner — Jay Patel
Assistant Examiner — Francis G Geroleo
(74) Attorney, Agent, or Firm — Myers Bigel & Sibley, P.A.

(57) ABSTRACT

The embodiments reduce output delay for pictures by deter-
mining after a current picture has been decoded and stored in
a decoded picture buffer, DPB, a number of pictures in the
DPB that are marked as needed for output. This number is
compared, after a current picture has been decoded and stored
in the DPB against a value derived from at least one syntax
element present or to be present in a bitstream representing
pictures of a video sequence. If this number is greater than the
value a picture, which is the first picture in output order, of the
pictures in the DPB that are marked as needed for output is
preferably output and marked as not needed for output.

35 Claims, 16 Drawing Sheets

DETERMINE A NUMBER

sl OF PICTURES IN DPB

MARKED AS NEEDED
FOR CUTPUT

COMPARE NUMBER
AGAINST VALUE

sz SPS MAX REORDER_ [}

PICSIHIGHESTTID]

VALUE

NUMBER >

NUMBER < |
VALUE |

QUTPUT FROM DPB 1ST

83 PICTURE IN OUTPUT

ORDER AND MARKED AS
NEEDED FOR CUTPUT

MARK PICTURE AS NOT
NEEDED FOR OUTPUT i

US 9,407,932 B2
Page 2

(51) Imt.ClL
HO4N 19/152 (2014.01)
HO4N 19/85 (2014.01)
HO4N 19/597 (2014.01)
HO4N 19/503 (2014.01)
HO4N 19/70 (2014.01)
HO4N 19/44 (2014.01)
HO4N 19/423 (2014.01)
(52) US.CL
CPC HO4N 19/423 (2014.11); HO4N 19/44
(2014.11); HO4N 19/503 (2014.11); HO4N
19/597 (2014.11); HO4N 19/70 (2014.11);
HO4N 19/85 (2014.11)
(56) References Cited

U.S. PATENT DOCUMENTS

2011/0235709 Al
2012/0147973 Al

9/2011 Shi et al.
6/2012 Wu et al.

2013/0003864 Al* 1/2013 Sullivan HO4N 19/44
375/240.25
2014/0086336 Al* 3/2014 Wang ... HO4N 19/70
375/240.26

FOREIGN PATENT DOCUMENTS

RU 2009 110693 A 9/2010

RU 2414092 C2 3/2011

RU 2506710 C2 2/2014

WO WO 2013/002700 Al 1/2013

WO WO 2014/047175 Al 3/2014
OTHER PUBLICATIONS

PCT International Search Report, Application No. PCT/EP2013/
070093, Dec. 4, 2013.

R. Sjoberg et al.: “Absolute signaling of reference pictures”, Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11 6™ Meeting: Torino, 2011; Docu-
ment JCTVC-F493 WG11 Number: m20923; 10 pages.

Y-K Wang et al: “MVC HRD and bitstream restriction”, 27. JVT
Meeting; Apr. 6-10, 2008: Geneva, CH, (Joint Video Team of ISO/
IEC JTC1/SC29/WG11 and ITU-T SG.16), No. JVT-AA020, Apr.
28, 2008, XP030007363, ISSN: 0000-0091, 19 pages.

Gary J. Sullivan: “Proposed constraint on reordering latency (for
further consideration of JCTVC-F5417, Joint Collaborative Team on
Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTCLl/
SC29/WG11 7" Meeting: Geneva, CH; Nov. 21-30,2011; Document
JCTVC-G779; 5 pages.

R. Sjoberg et al.: “Early bumping”, Joint Collaborative Team on
Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTCLl/
SC29/WG11 117 Meeting: Shanghai, CN, Oct. 10-19, 2012; Docu-
ment JCTVC-K0214_r1; 3 pages.

J. Samuelsson et al.: “Reducing output delay for “bumping” pro-
cess”, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T
SG16 WP3 and ISO/IEC JTC1/SC29/WG11 7% Meeting: Geneva,
CH, Nov. 21-30, 2011; Document JCTVC-G583; 5 pages.

J. Samuelsson et al.: “AHG1S5: Syntax controlled output process”,
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16
WP3 and ISO/IEC JTC1/SC29/WG11 8" Meeting: San Jose, CA,
USA, Feb. 1-10, 2012; Document JCTVC-H0567; 9 pages.

First Office Action with English language translation, Chinese Patent
Application No. 201380050705.8, Oct. 23, 2015.

Written Opinion of the International Preliminary Examining Author-
ity, PCT Application No. PCT/EP2013/070093, Sep. 2, 2014.
International Preliminary Report on Patentability, PCT Application
No. PCT/EP2013/070093, Feb. 3, 2015.

B. Bross et al.: “Proposed Editorial Improvements for High efficiency
video coding (HEVC) Text Specification Draft 8”; JCT-VC of ITU-T
SG16 WP3 and ISO/IEC JTC1/SC29/WG11 11” Meeting, Shaghai,
CN, Oct. 10-19, 2012. Document: JCTVC-K0030_v3 Published
Sep. 12, 2012; 276 pages.

B. Bross et al.: “High efficiency video coding (HEVC) text specifi-
cation draft 8”; JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/
SC29/WG11 10” Meeting, Stockholm, SE, Jul. 11-20, 2012. Docu-
ment: JCTVC-J1003__d2. Published Sep. 12, 2012; 289 pages.
Russian Office Action Corresponding to Russian Patent Application
No. 2015115939; Date of Completion: Jan. 25, 2016; 4 Pages.

* cited by examiner

US 9,407,932 B2

Sheet 1 of 16

Aug. 2, 2016

U.S. Patent

T N

(pe soud)
¥ b4
r4 4 € I ¥3A¥0 9NIaoosad
v 12 ¢ 1 *{3aA™O 1Nd1no

N
\
\
[PPSRy
N
\
N
N
N
[NP

[4 € L ¥3A¥O0 9NIa0D3aa
€ [4 L *H¥3AY0 1Nndino

A

Z b4

E »\ E (pe Joud)

——
1NndLno

(pe Joud)
| B4

add

i

43d0o3d
Y9¢'H

!

O—FWFXWCE

(We soud)
G ‘b4

US 9,407,932 B2

ONIdO23d
J4N1I1d

A

S$S300dd
dN-3344

y

Sheet 2 of 16

404 S34dN1L2Id
ANV HO INO
‘0Y3Z 40 A¥3AIT3d

S$S300ud
1Nd1no
3J4N10ld

A

Aug. 2, 2016

SS300d¥d
ONIAHVIN
34NLOld

y

44dv3H
JOI'1S 1814
40 ONISHVd

U.S. Patent

m 1Nd1no

m HO4 SIUNLII

m ANV 4O INO

| ‘'OY3Z 40 AY3AAITAA

(ue toud)
¢ ‘b

$8300dd
dN-3344

A

SS300dd
1Ndino
34N10Id

A

SS3004d
ONDAIVIN
34N101d

A

ONIdOd3A
J4n190ld

US 9,407,932 B2

Sheet 3 of 16

Aug. 2, 2016

U.S. Patent

€ 4 b -430H0 ONIA0D3a
€ [4 L -430¥0 LNd1no

(pe toud)

. ‘B4 ‘ E
dvd

0=[01SOId Y3AHO3IY INNN XV

w0
<

g I ¥3gY0 9NIgoo3a
¥ € 4 r *¥3IAYO LNdLNO
[4 L 4 HMIAVT IVHOdNAL

o wn N

(pe Joud)

E 0=[0IS2Id ¥3aHO3IY WNN XVYIN
9 614 /

A

L=[L1SOld ¥3adoay WNN XVIA

¢=[zZlsold ¥3adoay WNN XY

US 9,407,932 B2

Sheet 4 of 16

Aug. 2,2016

U.S. Patent

1S d31S 0L 6

%

"B

FHNLOld INFHHND 3d003d

GlS

1

89dd NOod4d 1Nd1no
yO4 d3d33N LON ANV
FONFHId3d JO4 A3SNNN
SV d3XdVIN 3dNLOId ALdNS

1453

*

1Nd1NO 404 G34d33N
1ON SV MdVIN ANV LNd.LNO
044 d3d33N SV AIHHVIN
S3UNLIId 0< LNdino

€ls

»

JONddd43d
H04 d3SNNN
SV Sdd NI LON 1ng
840 NI STANL0Id AdVIN

%

Sdd ININHE313d LS

%

F4NLOIld LINFHAND
40 ¥3Av3aH 30I1'1S 3SHVd

[453)

0ls

R

1Nd1NO J04 d3d33N
1ON SV FHNLOId HdVIN

*

1Nd1NO J04 d3d33aN
SY d3aXdVIN ANV 13dd0
1Nd1NO NI F34N1old
1S1 9da WOy¥4d LNdLno

> d34dNNN

A
INTVA INTVA
< d39NNN

a1 1S3HDIHISOIA
HIAHOTH XYW SdS
INTVA LSNIVOY
HIGNNN IHVYANOD

4

1Nd1noO J04
d3d33N SV d3aXdVIN
9dd NI S34dN101d 40
H39NNN VY INING3 130

¥S

€S

[43)

IS

US 9,407,932 B2

Sheet 5 of 16

Aug. 2,2016

U.S. Patent

¢l B4

LES/ZS d31S 0L

t

JNTVA LOFT13S

1

GES/LS d441S NOYHH

ZlL Big

9€S/1S d41S Ol

t

1Nd1lno ¥o4d
a3a3anN (LON) SY 3¥NLoId
INIHEND d3A0DIAMEVI

L¥S

i

9dd NI 34Nn.10id
INIHEND d3A003d 3J0LS

1

GES/SLS d31S INOYA
)

ol Bid

dOl1S 1S d31S 01

ovsS

0=OV 74 SOId H a =9V 74 SOId
N

“HOIMd LNdLNO O

dvd
40 d3Adv3aH 3011S ISHVYd

“YHOIMd LNdLNO ON

0¢es

US 9,407,932 B2

Sheet 6 of 16

Aug. 2, 2016

U.S. Patent

6eS

8¢S

LES

9€es

L1 Bi4

1Nd1NO Y04 d3d33N
1ON SV FdNLIId MdVIN

%

1Nd1NO HO4 d3d33N
SV O=UVIN ANV J3add0
1Nd1INO NI 34N10id
1S1 8dd NOY4 1Nd1No

> d3dINNN

7y
ANTVA ANTVA
< Y3dNNN

ANTVYA LSNIVOV
HIGNNN FHVJNOD

1Ndino
d0d 03d33IN SV ADIVIA
gdd NI S3dnlold 40
J39NNN v ININY313d

A

1

FHNLOId INFHIND 4a033d

Ges

1

add NOo¥4 1nd1Nno
d04 d3A33N 1ON ANV
FONFHI4TY JO4 d3snNN
SV 3MAVIN FdN10ld ALdING

¥ES

*

1Nd1N0O HJ04 d3d339N
1ON SV MHVIN ANV LNd1NO
d04 d3d33N SV A3MHVYIN
S3HENLIId 0< 1NdLNO

€ES

+

JONTHH43d
d04 d3SNNN
SV Sdd NI LON 1n4
9dd NI S34NL3Id MHVIA

i

Sdd ININET13d l€S

ﬁ

FAN1OId INFHHNO
40 H3Av3H 0[S 4S4vd

CES

0cs

US 9,407,932 B2

Sheet 7 of 16

Aug. 2, 2016

U.S. Patent

1Nnd1no

d04 s3dNLOId

ANVYIN 4O 9NO

‘0¥3Z 40 AY3NIT3A

Gl 614

ONIA0O3d
34N LOld

A

S5300¥d
dN-3344

A

$83004d
1Nnd1ino
F4N101d

a3141don

h

SS300dd
ONDIEVYIN
34N10ld

A

d4av3H
3J01NS 1SHId
40 ONISHVd

1nd1ino

d0O4 S34N10Id

ANV 0 3NO

‘0Y3Z 40 AY3ININAA

1ndino

HO4 S34dN1901d

ANVIN HO 3NO

‘0Y3Z 40 AY3AINZA

1 "D

¢# SS300Hd
1Nndino
F4NL1OId

A

ONIA023d
F4N10ld

SS300™Ud
dN-3344

SS300¥d
1Nd1no
JHNLOId

A

S$S3004dd
ONPAHVYIN
FANLOId

y

H3Aav3H
J317S 1SHid
40 ONISHvd

US 9,407,932 B2

Sheet 8 of 16

Aug. 2, 2016

U.S. Patent

A

c¢ B4

629

A\

-

A)

d0OSS3004dd

\
dda

ow\\x

9| "bi-

gt

cl

14"

N

0l9

AJOWEN

0¢es

mmoOOZM\\

/

009

\

d0SS3004d

add

ow\\\

9l

A 4

N

/

OL1

/

AJONW3N

oci

mMQOOmﬂ\\

001

US 9,407,932 B2

Sheet 9 of 16

Aug. 2, 2016

U.S. Patent

61 b14

ovy — |

osy — |

ozy — |

oLy —

1

3INaow
ONIIHVIN

ITNAON
ONILLNdLNO

L1

ITNAOCN
ONIdVdNOD

L1

FTNAON
ONINING313d
d3dINNN

430d093da

00¥

Ll b4
LINN 1INN
05z .5450 oZ_v_E<_>_ 1~ 092z
| ¥0Lvdvdnoo o
0¥ —
_ T~ gzZ¢
LINN |
ONININYI1L3A AHJOWNIN | 1~ ozz
HIGNNN
/S 1INN
0€2 1NdNI
012
¥30053a
002

US 9,407,932 B2

Sheet 10 of 16

Aug. 2, 2016

U.S. Patent

gl ‘b1
09¢
d h%ﬁﬁo
0se | | 1INN cze
_ ONIIEVYIN
| ¥O1VHVdNOD [\ LINN
ore | | | ONIALdNZ
_— I~
e adq 3¥NLOId ~ 066
| | ONININM313d JR—— NN
T YIGNNN
oce ONIQ0D3A [~ gpe
1INN 1INN 0ze
osce —1 | ONIsyvd 1NdNI
_ ole
1INN
| ONININYI13A
08s — | Sdy
¥3aoo3a
oog —

US 9,407,932 B2

Sheet 11 of 16

Aug. 2, 2016

U.S. Patent

1Z 614
oc 614
3TINAON
ogg —1 1 ONIHVANOO
3INAON
. | ONININY3L3a
1ndino " 045 - HIGNNN
¥O4 a3033IN LON SY m
1Nd1NO Y04 G3AIANSY | ! | 3Inaonw
AaxHVIN ¥3a¥0 1Nd1NO | €95 095 | ONId023a
NI I™NLOId LS| MHEVIN m
7y m HAT1NAON
ANTVA ANTVA " 1 ONIALIWI
> H39NNN < M3gnNNN m 0SS
_ laitsgHoiHIsoId : F1INAOW
| T¥30HOIH XYW SdS ' oS oy —1 1L 2NLNdLNo
INTVA LSNIVOY _u
YIGNNN FHVANOD ” IINAOW
ry ! ocs T ONDRIVIN
JINAOW
1nd1no Yo | ONININY3L3d
Q333N SY AIMEVIN 02s Sdy
8da NI S39NL2Id 40 09s
YIGNNN ¥ ININYT13A [Fnaow
0l ONISHYd
005 — | ¥30003a

US 9,407,932 B2

Sheet 12 of 16

Aug. 2,2016

U.S. Patent

9/S

SLS

ze 614

1Ndino
d04 d3d33N LON SY
1Nd1N0 J04 d4d33N SV
A3XHVIN ¥30H0 LNd1NOo
NI F4NLOId LS| MHVIN

h
ANTVA INTVA
> H3dINNN < ¥39NNN
1 ANTVA LSNIVOV

H39INNN 34VdNOD

4

1

1Nd1NO J04 d3d33IN SY
d3axdvin 9dd NI S34N1LOId
40 H3gIWNN V ININY313d

VLS

1

FHNLOId INTFHHND 3d003d

elS

i

gdd NO¥4 1Nd1Nno
404 d3d33N LON ANV
IONITYI4TY JO4 AISNNN
SY d3aXHVIN FHNLOId ALJINT

[AAS

4

1Nd1NO JO4 A3d33N 1ON
SY 1Nd1NO Jd0d4 d3d33N SY
A3IMYVYIN STHNLOId 0< HEVIN

LLS

»

JONIH3I43TH
¥04 @3asnNn’
SV Sdd NI LON 1Nn4
add NI S3dNLOId HdvIN

0.S

US 9,407,932 B2

Sheet 13 of 16

Aug. 2, 2016

U.S. Patent

e b4

1INN
ONIAEVIN ™

HOLVAEVdINOO |_|

1INN :
ONININSG313d

|

9dd

d498NNN

09/

T~ G2l

™~
AHONAN ~ 02/

d3d0OONS

Qg B4
oLLL
/
0ZLL LINN O
0001
YOWIW || ¥3A0ONI
A¥0 1~ ‘006 ‘008
_ ‘00Z ‘009
¥3qoo3ag L] 00§ ‘oov ovL —
~ ‘00€ ‘00Z ‘00}
YAV VIQIN
_ ™~ ocL1
s ™ 0L
ovLL
N Y,
0011

004

US 9,407,932 B2

Sheet 14 of 16

Aug. 2, 2016

U.S. Patent

00S ‘00¥% ‘00€ ‘00T ‘001 _— ¥30003Ar93A0ONT 6z B4
/0001 ‘006 ‘008 ‘00 ‘009
z
14 d D D //
-— — 1 €
4/—‘
STAYE -
1INN
ONIMEVYIN 098
__|{ ¥oLvavdnoo _ @z_w_&m_\,m
or8 _ _ -
3HNLOId I
1INN 840 068
ONININYILIA
0sg — H3gINNN AJONWIN [1INN o
SNIA0D3d ~~ 509
GZ8
0cs ¥IA0ONT
008

US 9,407,932 B2

Sheet 15 of 16

Aug. 2, 2016

U.S. Patent

lc b4

IINAON

0oL —1 ONIYVANOD
I1NAON

| ONINIWY313a
ool — 39NN
B J1NAON

0col ONIQ0D3A
I1NAON
ozol —1 1 ONIALJNT
J1NAOW
otor —11 ONHVIN

000L — | ¥3AOONT

STAN B

0c6

026 —

oL |

L

371NAON
ONDAHVIN

1

31NAON
ONIAVdNOD

L1

31NAON
ONININSG313d
d44dINNN

d3A0IONd

006

U.S. Patent Aug. 2, 2016 Sheet 16 of 16 US 9,407,932 B2

Fig. 30

'm_reorder_pic

S_max_nu

sp

LAYER
3
2
1
0

US 9,407,932 B2

1
DECODING AND ENCODING OF PICTURES
OF A VIDEO SEQUENCE USING BUMPING
OF PICTURES FROM A DECODED PICTURE
BUFFER

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a 35 U.S.C. §371 national stage appli-
cation of PCT International Application No. PCT/EP2013/
070093, filed on 26 Sep. 2013, which itself claims priority to
U.S. Provisional Patent Application No. 61/706,869, filed 28
Sep. 2012, the disclosure and content of both of which are
incorporated by reference herein in their entirety.

TECHNICAL FIELD

The present embodiments generally relate to decoding and
encoding pictures of a video sequence, and in particular to
outputting or bumping pictures from a decoded picture buffer
in connection with decoding and encoding pictures.

BACKGROUND

H.264 Video Compression

H.264 (Moving Picture Experts Group-4 Advanced Video
Coding (MPEG-4 AVC)) is the state of the art video coding
standard. It consists of a block-based hybrid video coding
scheme that exploits temporal and spatial redundancies. The
H.264/AVC standard is defined in a specification text that
contains many decoding processes that have to be executed in
the specified sequence in order for a decoder to be compliant
to the standard. There are no requirements on the encoder but
it is often the case that the encoder also executes most of the
processes in order to achieve good compression efficiency.

H.264/AVC defines a decoded picture buffer (DPB) that
stores decoded pictures after they have been decoded. This
means that the decoder is required to use a defined amount of
memory in order to decode a sequence. The DPB contains
pictures that are used for reference during decoding of future
pictures. “Used for reference” here means that a particular
picture is used for prediction when another picture is
decoded. Pixel values of the picture that is used for reference
may then be used to predict the pixel values of the picture that
is currently decoded. This is also referred to as Inter predic-
tion. The DPB additionally contains pictures that are waiting
for output. “Output” here means the function where a decoder
outputs a picture outside the decoder. The H.264 specification
describes how a bitstream is converted into decoded pictures
that are then output, see FIG. 1. The output pictures may e.g.
be displayed or written to disk.

One common reason for a picture in the DPB to be waiting
for output is that there is a picture that has not been decoded
yet that will be output before the picture.

FIG. 2 shows an example of three pictures: A, B,and C. The
decoding order is the order in which the pictures in com-
pressed format are fed into the decoder. This is typically the
same order in which the pictures are encoded by the encoder.
FIG. 2 shows that the decoding order in this example is A, B
and C. The output order is the order in which the decoded
pictures are output. The output order does not have to be the
same as the decoding order as is illustrated in the example in
FIG. 2 where the output order is A, C, B. The arrows in the
figure show which pictures that are used for reference for each
picture: picture A is used for reference for both picture B and
C.

10

15

20

25

30

35

40

45

50

55

60

65

2

In FIG. 2, picture C is decoded after B but output before it.
When picture B has been decoded, it can not be output imme-
diately since picture C has not been decoded yet and has to be
output before picture B. Therefore, picture B has to be stored
in the DPB after it has been decoded even if it is not used for
reference by any other picture. When decoding picture C,
picture A must also be present in the DPB since picture C uses
picture A for reference.

Output order is controlled by signaling a PictureOrder-
Count (POC) value. There are syntax elements in the bit-
stream to convey the POC of every picture and these values
are used in order to define the output order of pictures.

To keep track of the DPB, H.264/AVC contains three pro-
cesses that take place after a picture has been decoded: the
picture marking process, the picture output process and the
free-up process.

The picture marking process marks pictures as either “used
for reference” or “unused for reference”. A picture marked as
“used for reference” is available for reference which means
that a subsequent picture in decoding order may use the
picture for reference in its decoding processes. A picture
marked as “unused for reference” cannot be used for refer-
ence by subsequent pictures. This process is controlled by the
encoder through the bitstream. There is optional syntax in the
H.264/AVC bitstream that when present indicates what pic-
tures to mark as “unused for reference”. This operation is
often referred to as the memory management control opera-
tion (MMCO). If there is no optional MMCO syntax, a first-
in, first-out mechanism is defined, called the “sliding win-
dow” process. The sliding window process means that when
the last decoded picture would result in too many pictures in
the DPB, the oldest picture in decoding order is automatically
marked as “unused for reference”.

The picture output process, which is done after the picture
marking process, marks pictures as either “needed for output”
or “not needed for output”. A picture marked as “needed for
output” has not been output yet while a picture marked as “not
needed for output” has been output and is no longer waiting
for output. The picture output process also outputs pictures.
This means that the process selects pictures that are marked as
“needed for output”, outputs them and thereafter marks them
as “not needed for output™. The picture output process deter-
mines in which order pictures are output. Note that the picture
output process may output and mark zero, one or many pic-
tures after one particular picture has been decoded.

After these two processes have been invoked by the
decoder the free-up process is invoked. Pictures that are
marked both as “unused for reference” and “not needed for
output” are emptied and removed from the DPB. This is
sometimes referred to as one of the DPB picture slots has been
made free.

The size of the DPB in H.264/AVC is limited. This means
that the number of pictures that can be stored because they are
waiting for output or made available for reference is limited.
The variable max_dec_frame_buffering denotes the size of
the DPB, sometimes referred to as the number of picture slots
there are in the DPB. The encoder has to ensure that the DPB
size never overflows.

The three processes are described in the standard. This
means that the decoder is controlled by the encoder and
therefore the decoder does not have any freedom regarding
output order. It is all determined by the picture output process
and the related elements in the bitstream sent by the encoder.
A simplified flow chart for the decoding steps of H.264/AVC
is shown in FIG. 3.

The picture output process in H.264 defines the order in
which pictures shall be output. A decoder that outputs pic-

US 9,407,932 B2

3

tures in the correct order is output order compliant. A decoder
may follow the picture output process described in H.264 but
it is sometimes possible to use the variable num_
reorder_frames to output pictures earlier than what is given
by the picture output process, num_reorder_frames indicates
the maximum number of pictures that precede any picture in
decoding order and follow it in output order.

FIG. 4 shows an example where picture B has just been
decoded. But picture B cannot be output since it is not known
whether picture C is to be output before or after picture B. If
the encoder has decided that the output order is the same as
the decoding order, it can indicate a num_reorder_frames
value of 0 to the decoder. The encoder has thereby promised
that picture C in the example will be output after picture B and
a decoder can output picture B immediately when it has been
decoded. In this case, when num_reorder_frames is 0, there is
no additional reordering delay in the decoder. If num_reor-
der_frames in the example is setto 1, it is possible that picture
C is to be output before picture B. With num_reorder_frames
equal to 1, there is an additional reordering delay of 1 picture,
with num_reorder_frames is equal to 2, the reordering delay
is 2 pictures and so on.

HEVC Video Compression

High Efficiency Video Coding (HEVC), also referred to as
H.265, is a video coding standard developed in Joint Collabo-
rative Team-Video Coding (JCT-VC). JCT-VC is a collabo-
rative project between MPEG and International Telegraph
Union Telecommunication Standardization Section (ITU-T),
HEVC includes a number of new tools and is considerably
more efficient than H.264/AVC. HEVC also defines a tempo-
ral_id for each picture, corresponding to the temporal layer
the picture belongs to. The temporal layers are ordered and
have the property that a lower temporal layer never depends
on a higher temporal layer. Thus, higher temporal layers can
be removed without affecting the lower temporal layers. The
removal of temporal layers can be referred to as temporal
scaling. An HEVC bitstream contains a syntax clement,
max_sub_layers_minusl, which specifies the maximum
number of temporal layers that may be present in the bit-
stream. A decoder may decode all temporal layers or only
decode a subset of the temporal layers. The highest temporal
layer that the decoder actually decodes is referred to as the
highest temporal sub-layer and may be set equal to or lower
than the maximum numbers of layers as specified by
max_sub_layers_minusl. The decoder then decodes all lay-
ers that are equal to or lower than the highest temporal sub-
layer. The highest temporal sub-layer may be set by external
means.

Note that the description above is not specific for temporal
layers, but also holds for other types of layers such as spatial
layers and quality layers, etc. The temporal layer that the
decoder then decodes is referred to as the highest decoded
layer.

The decoding flow of HEVC is slightly different to H.264/
AVC.HEVChas a DPB, apicture marking process that marks
pictures as “used for reference” and “unused for reference”, a
picture output process that marks pictures as “needed for
output” and “not needed for output™ and a free-up process.
Like H.264/AVC, HEVC also uses POC values to define the
picture output order. A POC value is in HEVC represented by
the variable PicOrderCntVal, where pictures are output in
increasing PicOrderCntVal order.

HEVC does, however, not have MMCO or sliding window
process. Instead, HEVC specifies that a list of the pictures that
are marked as “used for reference” is explicitly sent in each
slice header. The picture marking in HEVC uses this list and
ensures that all pictures in the DPB that are listed are marked
as “used for reference” and that all pictures in the DPB that

40

45

4

are not listed are marked as “unused for reference”. The listis
called the reference picture set (RPS) and sending one in each
slice header means that the state of the reference marking in
the DPB is explicit and repeated in each slice, which is not the
case in H.264/AVC.

Since RPSs are used in HEVC, the picture marking pro-
cess, the picture output process and the free-up process are all
done after the parsing of the first slice header of a picture, see
FIG. 5.

The num_reorder_frames functionality as described for
H.264/AVC is also present in HEVC. An HEVC bitstream
contains a syntax element for each temporal layer, denoted
max_num_reorder_pics[i], where i is the temporal layer. The
function of max_num_reorder_pics[i] is the same as num_re-
order_frames but each codeword here indicates the maximum
allowed number of pictures in the same or lower temporal
layer that precedes a picture in decoding order and succeed-
ing that picture in output order.

Consider the example in FIG. 6 where the decoding order
is A, B, C, D, E and the output order is A, D, C, E, B. This is
a structure of pictures that uses temporal layers where pic-
tures A and B belong to the lowest temporal layer (layer 0),
picture C belongs to a middle temporal layer (layer 1) and
pictures D and E belong to the highest temporal layer (layer
2). The arrows in the figure show which pictures that are used
for reference by other pictures. For example, picture A is used
for reference by picture B since there is an arrow from picture
A to picture B. Best use of max_num_reorder_pics in HEVC
is to set it as low as possible to reduce the output delay as
much as possible. The lowest possible values of max_
num_reorder_pics for each temporal layer are shown in FIG.
6. The reason it is O for the lowest layer is because there is no
picture in layer 0 that precedes any picture in decoding order
but follows it in output order. For layer 1, we have picture B
that precedes picture C in decoding order but follows it in
output order, and for layer 2 we have pictures B and C that
both precedes picture D in decoding order but follows it in
output order.

If a decoder knows that it will only decode temporal layer
0, it could potentially output picture B as soon as it has been
decoded but if the decoder decodes all layers it can not. It
could then have to wait until there are two decoded pictures
that follow B in output order.

JCTVC-K0030_v3, Proposed Editorial Improvement for
High efficiency video coding (HEVC) Text Specification
Draft 8, B. Bross et al., JICT-VC of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11 117 Meeting, Shanghai, 10-19
Oct. 2012 as published on 12 Sep. 2012 discuses usage of
max_num_reorder_pics in section 7.4.2.1 on page 62 and
section 7.4.2.2 on page 64.
no_output_of_prior_pics_flag

Both H.264 and HEVC bitstream specifies a flag called
no_output_of_prior_pics_flag. This flag is present in the slice
header of random access pictures (RAP). Random access
pictures are pictures from which it is possible to tune into a
stream. They guarantee that decoding of future pictures can
be done correctly if a decoder starts decoding from the ran-
dom access point. The decoder does not have to be fed any
data containing pictures that precede the random access pic-
ture in decoding order for tune-in to work.

The no_output_of_prior_pics_flag specifies how the pre-
viously-decoded pictures in the decoded picture buffer are
treated after decoding of a random access picture. In short, if
no_output_of_prior_pics_flag is equal to 1, no pictures in the
DPB that are marked as “needed for output™ should be output,
but if no_output_of_prior_pics_{flag is equal to O they should
be output.

US 9,407,932 B2

5

Consider FIG. 7 that shows an example where max_
num_reorder_pics is 0 and picture C is a random access
picture with no_output_of_prior_pics_flag equal to 1. In
H.264, it would be possible to output picture B immediately
after it has been decoded. This is not the case in the current
HEVC specification since the decoder does not know imme-
diately after picture B has been decoded whether picture C is
a RAP picture with no_output_of_prior_pics_flag equal to 1
or not. If picture C is not such a picture, picture B could be
output immediately after it has been decoded. But if picture C
is indeed a RAP picture with no_output_of_prior_pics_flag
equal to 1, picture B should not be output, since picture B is
marked as “needed for output” when the slice header of
picture C is decoded.

Since the picture output process in HEVC is done when the
slice header is parsed and no_output_of_prior_pics_flagis an
important feature, there is a higher output delay in the current
HEVC standard than in H.264/AVC.

Information of usage of no_output_of_prior_pics_flag is
disclosed in section 7.4.7.1 on page 75 and section C.5.2 on
page 26 in JCTVC-K0030_v3.

The advantage by using RPSs in HEVC is that it is much
more error resilient compared to the H.264/AVC method.
Also, temporal scalability is more straightforward. A problem
with the HEVC solution is that it introduces additional delay
regarding picture output compared to H.264/AVC. In H.264/
AVC, pictures can be output after a picture has been decoded.
In HEVC, the decoder has to wait for the slice header of the
next picture to be parsed until pictures are output. This causes
a delay.

Hence, there is aneed to solve the shortcomings ofthe prior
art video coding and in particular delay problems that may
occur in the video coding of the prior art.

SUMMARY

It is a general objective to provide an improved decoding
and encoding of pictures of a video sequence.

It is a particular objective to provide such a decoding and
encoding that enables low output delay for pictures.

These and other objectives are met by embodiments as
disclosed herein.

An aspect of the embodiments relates to a method per-
formed by a decoder. The method comprises determining,
after a current picture has been decoded and stored in a
decoded picture buffer (DPB), a number of pictures in the
DPB that are marked as needed for output. The method also
comprises comparing the number against a value sps_
max_num_reorder_pics[HighestTid]. HighestTid specifies a
highest layer that is decoded by the decoder of a video
sequence. The method further comprises outputting a picture,
which is a first picture in output order of the pictures in the
DPB that are marked as needed for output, if the number is
greater than the value. The picture is also marked as not
needed for output if the number is greater than the value.

A related aspect of the embodiments defines a decoder
configured to determine, after a current picture of a bitstream
representing pictures of a video sequence has been decoded
and stored in a DPB, a number of pictures in the DPB that are
marked as needed for output. The decoder is also configured
to compare the number against a value sps_max_num_reor-
der_pics[HighestTid]. The decoder is further configured to
output a picture, which is a first picture in output order, of the
pictures in the DPB that are marked as needed for output and
mark the picture as not needed for output if the number is
greater than the value.

10

15

20

25

30

35

40

45

50

55

60

65

6

Another related aspect of the embodiments defines a
decoder comprising a number determining module for deter-
mining, after a current picture of a bitstream representing
pictures of a video sequence has been decoded and stored in
a DPB, a number of pictures in the DPB that are marked as
needed for output. The decoder also comprises a comparing
module for comparing the number against a value sps_
max_num_reorder_pics[HighestTid]. The decoder further
comprises an outputting module for outputting a picture,
which is a first picture in output order, of the pictures in the
DPB that are marked as needed for output if the number is
greater than the value. The decoder additionally comprises a
marking module for marking the picture as not needed for
output if the number is greater than the value.

Another aspect of the embodiment relates to a method
performed by an encoder. The method comprises determin-
ing, after a current picture has been decoded and stored in a
DPB, a number of pictures in the DPB that are marked as
needed for output. The method also comprises comparing the
number against a value sps_max_num_reorder_pics|High-
estTid]. The method further comprises marking a picture,
which is a first picture in output order, of the pictures in the
DPB that are marked as needed for output as not needed for
output if the number is greater than the value.

A related aspect of the embodiments defines an encoder
configured to determine, after a current picture has been
decoded and stored in a DPB, a number of pictures in the DPB
that are marked as needed for output. The encoder is also
configured to compare the number against a value sps_
max_num_reorder_pics[HighestTid]. The encoder is further
configured to mark a picture, which is a first picture in output
order, of the pictures in the DPB that are marked as needed for
output as not needed for output if the number is greater than
the value.

Another related aspect of the embodiments defines an
encoder comprising a number determining module for deter-
mining, after a current picture has been decoded and stored in
a DPB, a number of pictures in the DPB that are marked as
needed for output. The encoder also comprises a comparing
module for comparing the number against a value sps_
max_num_reorder_pics[HighestTid]. The encoder further
comprises a marking module for marking a picture, which is
a first picture in output order, of the pictures in the DPB that
are marked as needed for output as not needed for output if the
number is greater than the value.

A further aspect of the embodiments relates to a method
performed by a decoder. The method comprises parsing a
slice header of a current picture to be decoded of a video
sequence. The method also comprises determining a refer-
ence picture set (RPS) for the current picture based on the
parsed slice header. The method further comprises marking
all pictures in a DPB that are not present in the RPS as unused
for reference. Zero, one or many pictures, marked as needed
for output, of the pictures in the DPB are output and marked
as not needed for output. The method also comprises empty-
ing any picture, from the DPB, marked as unused for refer-
ence and not needed for output of the pictures in the DPB. The
method further comprises decoding the current picture and
determining a number of pictures in the DPB that are marked
as needed for output. The number is compared against a value
derived from at least one syntax element present in a bit-
stream representing pictures of the video sequence. If the
number is greater than the value a picture, which is a first
picture in output order, of the pictures in the DPB that are
marked as needed for output is output and marked as not
needed for output. In an embodiment, determining the num-

US 9,407,932 B2

7

ber of pictures, comparing the number, outputting the picture
and marking the picture are performed after decoding the
current picture.

A related aspect of the embodiments defines a decoder
configured to parse a slice header of a current picture to be
decoded of a bitstream representing pictures of a video
sequence and determine a RPS for the current picture based
on the parsed slice header. The decoder is also configured to
mark all pictures in a DPB that are not present in the RPS as
unused for reference. The decoder is further configured to
output zero, one or many pictures, marked as needed for
output, of the pictures in the DPB and mark the zero, one or
many pictures as not needed for output. The decoder is addi-
tionally configured to empty, from the DPB, any picture
marked as unused for reference and not needed for output of
the pictures in the DPB. In this embodiment, the decoder is
also configured to decode the current picture. The decoder is
further configured to determine a number of pictures in the
DPB that are marked as needed for output. The decoder is
additionally configured to compare the number against a
value derived from at least one syntax element present in the
bitstream. In this embodiment, the decoder is configured to
output a picture, which is a first picture in output order, of the
pictures in the DPB that are marked as needed for output and
mark the picture as not needed for output if the number is
greater than the value. The decoder is preferably configured to
determine the number of pictures, compare the number, out-
put the picture and mark the picture after decoding the current
picture.

Another related aspect of the embodiments defines a
decoder comprising a parsing module for parsing a slice
header of a current picture to be decoded of a bitstream
representing pictures of a video sequence. The decoder fur-
ther comprises a reference picture set determining module for
determining a RPS for the current picture based on the parsed
slice header. The decoder also comprises a marking module
for marking all pictures in a DPB that are not present in the
RPS as unused for reference and an output module for out-
putting zero, one or many pictures, marked as needed for
output, of the pictures in the DPB. The marking module is
further for marking the zero, one or many pictures as not
needed for output. The decoder comprises a picture emptying
module for emptying, from the DPB, any picture marked as
unused for reference and not needed for output of the pictures
in the DPB. The decoder also comprises a decoding module
for decoding the current picture. The decoder further com-
prises a number determining module for determining a num-
ber of pictures in the DPB that are marked as needed for
output and a comparing module for comparing the number
against a value derived from at least one syntax element
present in the bitstream. In this embodiment, the outputting
unit is further for outputting a picture, which is a first picture
in output order, of the pictures in the DPB that are marked as
needed for output if the number is greater than the value. The
marking module is further for marking the picture as not
needed for output if the number is greater than the value. In a
preferred embodiment, the number determining module
determining the number of pictures, the comparing module
comparing the number, the outputting module outputting the
picture and the marking module marking the picture after the
decoding module decoding the current picture.

Yet another aspect of the embodiments relates to a method
performed by an encoder. The method comprises marking all
pictures in a DPB that are not present in a RPS for a current
picture of a video sequence as unused for reference and mark-
ing zero, one or many pictures, marked as needed for output,
of the pictures in the DPB is not needed for output. The

10

20

25

30

35

40

45

50

55

60

65

8

method also comprises emptying, from the DPB, any picture
marked as unused for reference and not needed for output of
the pictures in the DPB. The method further comprises decod-
ing the current picture. A number of pictures in the DPB that
are marked as needed for output is determined and compared
against a value derived from at least one defined syntax ele-
ment. The method also comprises marking a picture, which is
a first picture in output order, of the pictures in the DPB that
are marked as needed for output as not needed for output if the
number is greater than the value. In a preferred embodiment,
determining the number of pictures, comparing the number
and marking the picture are performed after decoding the
current picture.

A related aspect of the embodiments defines an encoder
configured to mark all pictures in a DPB that are not present
in a RPS for a current picture of a video sequence as unused
for reference. The encoder is also configured to mark zero,
one or many pictures, marked as needed for output, of the
pictures in the DPB, as not needed for output and empty, from
the DPB, any picture marked as unused for reference and not
needed for output of the pictures in the DPB. The encoder is
further configured to decode the current picture. The encoder
is additionally configured to determine a number of pictures
in the DPB that are marked as needed for output and compare
the number against a value derived from at least one defined
syntax element. The encoder is also configured to mark a
picture, which is a first picture in output order, of the pictures
in the DPB that are marked as needed for output as not needed
for output if the number is greater than the value. In a pre-
ferred embodiment, the encoder is configured to determine
the number of pictures, compare the number and mark the
picture after decoding the current picture.

Another related aspect of the embodiments defines an
encoder comprising a marking module for marking all pic-
tures in a DPB that are not present in a RPS for a current
picture of a video sequence as unused for reference and mark-
ing zero, one or many pictures, marked as needed for output,
of the pictures in the DPB, as not needed for output. The
encoder also comprises a picture emptying module for emp-
tying, from the DPB, any picture marked as unused for ref-
erence and not needed for output of the pictures in the DPB.
The encoder further comprises a decoding module for decod-
ing the current picture. The encoder also comprises a number
determining module for determining a number of pictures in
the DPB that are marked as needed for output and a compar-
ing module for comparing the number against a value derived
from at least one defined syntax element. In this embodiment,
the marking module is further for marking a picture, which is
a first picture in output order, of the pictures in the DPB that
are marked as needed for output as not needed for output if the
number is greater than the value. In a preferred embodiment,
the number determining module determining the number of
pictures, the comparing module comparing the number and
the marking module marking the picture after the decoding
module decoding the current picture.

Further aspects of the embodiments relates to a mobile
terminal comprising a decoder according to above and/or an
encoder according to above and a network node comprising a
decoder according to above and/or an encoder according to
above.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments, together with further objects and advan-
tages thereof, may best be understood by making reference to
the following description taken together with the accompa-
nying drawings, in which;

US 9,407,932 B2

9

FIG. 1 is a schematic overview of a H.264/AVC decoder;

FIG. 2 illustrates output and decoding order for an example
of'a multi-layer video sequence;

FIG. 3 is a simplified decoding flow chart of H.264/AVC;

FIG. 4 illustrates output and decoding order for an example
of'a multi-layer video sequence;

FIG. 5 is a simplified decoding flow chart of HEVC;

FIG. 6 illustrates output and decoding order and temporal
layers for an example of a multi-layer video sequence;

FIG. 7 illustrates output and decoding order for an example
of'a video sequence;

FIG. 8 is a flow chart of a method performed by a decoder
according to an embodiment;

FIG. 9 is a flow chart of additional, optional steps of the
method in FIG. 8;

FIG. 10 is a flow chart of an additional, optional step of the
method in FIG. 8;

FIG. 11 is a flow chart of a method performed by a decoder
according to another embodiment;

FIG. 12 is a flow chart of additional, optional steps of the
method in FIG. 9 or 11;

FIG. 13 is a flow chart of an additional, optional step of the
method in FIG. 8 or 11;

FIG. 14 is a simplified decoding flow chart of an embodi-
ment;

FIG. 15 is a simplified decoding flow chart of another
embodiment;

FIG. 16 is a schematic block diagram of a decoder accord-
ing to an embodiment;

FIG. 17 is a schematic block diagram of a decoder accord-
ing to another embodiment;

FIG. 18 is a schematic block diagram of a decoder accord-
ing to a further embodiment;

FIG. 19 is a schematic block diagram of a decoder accord-
ing to yet another embodiment;

FIG. 20 is a schematic block diagram of a decoder accord-
ing to a further embodiment;

FIG. 21 is a flow chart of a method performed by an
encoder according to an embodiment;

FIG. 22 is a flow chart of a method performed by an
encoder according to another embodiment;

FIG. 23 is a schematic block diagram of an encoder accord-
ing to an embodiment;

FIG. 24 is a schematic block diagram of an encoder accord-
ing to another embodiment;

FIG. 25 is a schematic block diagram of an encoder accord-
ing to a further embodiment;

FIG. 26 is a schematic block diagram of an encoder accord-
ing to yet another embodiment;

FIG. 27 is a schematic block diagram of an encoder accord-
ing to a further embodiment;

FIG. 28 is a schematic block diagram of a mobile terminal
according to an embodiment;

FIG. 29 is a schematic block diagram of a network node
according to an embodiment; and

FIG. 30 illustrates output and decoding order for an
example of a multi-layer video sequence.

DETAILED DESCRIPTION

Throughout the drawings, the same reference numbers are
used for similar or corresponding elements.

The present embodiments generally relate to decoding and
encoding pictures of a video sequence, and in particular to
outputting or bumping pictures from a decoded picture buffer
in connection with decoding and encoding pictures. The

10

15

20

25

30

35

40

45

50

55

60

65

10

embodiments thereby enable a reduction in the output delay
and allow an earlier output of pictures than state of the art
solutions.

In a general embodiment, when a picture is decoded, the
decoder or encoder (picture decoding is also performed dur-
ing encoding in order to obtain reconstructed reference pic-
tures from previously encoded pictures) determines the num-
ber of pictures in a decoded picture buffer (DPB) that are
marked as needed for output and compares that number
against a value that is derived from syntax elements in the
bitstream. If the number of pictures in the DPB marked as
needed for output is greater than the value that is derived from
syntax elements in the bitstream a modified output process is
performed or the picture of the pictures in the DPB marked as
needed for output, which is the first picture in output order is
output, denoted picture output process #2, and marked as not
needed for output.

Various particular implementation embodiments and
aspects will now be described further herein starting with the
decoding side and then continuing with the encoding side.

Marked as needed for output implies herein that a picture is
waiting to be output, such as for display or storage. Corre-
spondingly, marked as not needed for output implies herein
that a pictures is not waiting to be output and may, for
instance, already have been output. Correspondingly, marked
as used for reference implies that a picture is used for predic-
tion when another picture is decoded. Marked as unused for
reference implies that the picture cannot be used for reference
or prediction by subsequent pictures. The marking as men-
tioned above should not be interpreted as literally marking the
pictures with a label “needed for output”, “not needed for
output”, “used for reference” or “unused for reference”.
Rather, the marking should be interpreted that the picture is
identified in some way that it should be/should not be output
and that is could be used as reference picture/not used as
reference picture. The marking could be implemented in vari-
ous embodiments. For instance, the picture could be stored in
a particular portion of the DPB dedicated for pictures that
should be output or that should not be output or pictures that
could be used as reference picture or that should not be used
as reference picture. Alternatively, the picture could be tagged
or otherwise associated with a flag or other codeword identi-
fying the picture as needed for output vs. not needed for
output and used for reference vs. unused for reference. In the
case of a flag implementation, the flag could have a first value
(0,,,, or 1,..), to indicate one of the alternatives and then have
a second value (1,,, or 0,,,,) to indicate the other alternative.
For instance, a first flag could be used with regard to output of
pictures and a second flag could be used with regard to ref-
erence.

Hence, a general aspect relates to a method performed by a
decoder. In the method the decoder determines the number of
pictures in the DPB that are marked as needed for output and
compares that number against a value that is derived from
syntax elements in the bitstream. If the number of pictures in
the DPB marked as needed for output is greater than the value
that is derived from syntax elements in the bitstream, a modi-
fied output process is performed or the picture of the pictures
in the DPB marked as needed for output, which is the first
picture in output order is output, denoted picture output pro-
cess #2 herein, and marked as not needed for output.

This general aspect is preferably implemented in a HEVC
compliant decoder, also referred to as a H.265 compliant
decoder herein. In such a case, an implementation embodi-
ment relates to a method performed by a HEVC compliant
decoder and comprising the following steps. The HEVC com-
pliant decoder determines a number of pictures in a DPB that

US 9,407,932 B2

11

are marked as needed for output. The HEVC compliant
decoder also compares the number against a value derived
from at least one syntax element present in a bitstream rep-
resenting pictures of a video sequence. The HEVC compliant
decoder further outputs a picture, which is a first picture in
output order, of the pictures in the DPB that are marked as
needed for output if the number is greater than the value. In
addition, the HEVC compliant decoder marks the output
picture as not needed for output if the number is greater than
the value.

FIG. 8 is a flow chart of a method performed by a decoder
according to an embodiment. The method comprises deter-
mining, in step S1 and after a current picture has been
decoded and stored in a DPB, a number of pictures in the DPB
that are marked as needed for output. A next step S2 com-
prises comparing this number against a value sps_max_
num_reorder_pics|HighestTid]. If the number is greater than
the value the method continues to step S3. This step S3
comprises outputting a picture, which is a first picture in
output order, of the pictures in the DPB that are marked as
needed for output. The picture, which was output in step S3,
is then marked as not needed for output in step S4. Hence, this
step S4 is performed if the number is greater than the value.

In this embodiment, sps_max_num_reorder_pics[High-
estTid] is used as preferred representation of the value derived
from at least one syntax element present in a bitstream rep-
resenting pictures of a video sequence. Furthermore, High-
estTid specifies a highest layer that is decoded by the decoder
of'the video sequence. Hence, HighestTid indicates the high-
esttemporal sub-layer, if the video sequence comprises one or
more temporal layers, and indicates the highest decoded
layer, if the video sequence instead comprises another type of
layers, such as one or more spatial layers, quality layers, etc.

In an embodiment, sps_max_num_reorder_pics[i] indi-
cates the maximum allowed number of pictures that can pre-
cede any picture in the coded video sequence in decoding
order and follow that picture in output order when HighestTid
is equal to i. The prefix sps of max_num_reorder_pics|i]
indicates that the syntax element is preferably present in a
Sequence Parameter Set (SPS) of the bitstream.

Thus, in this embodiment there could be one value derived
per layer in the bitstream and the value to use in the compari-
son performed in step S2 is the value that is derived for the
highest layer that is actually decoded by the decoder of the
video sequence. Please note that this highest decoded layer
may be equal to or lower than the maximum number of layers
in the video sequence as specified by a max_sub_layers_mi-
nusl syntax element, such as vps_max_sub_layers_minusl
or sps_max_sub_layers_minus1, depending on whether the
syntax element is retrieved from a Video Parameter Set (VPS)
or SPS.

Hence, in a particular embodiment the video sequence is a
multi-layer video sequence comprising multiple, i.e. at least
two, layers of pictures. Each layer of the multiple layers then
preferably has an associated syntax element defining a
respective value. The value used in the comparison of step S2
is then the value obtained from the syntax element associated
with, in this embodiment, the highest layer that is decoded by
the decoder of the multiple layers.

In a particular embodiment, sps_max_num_reorder_pics
[1] indicates the maximum allowed number of pictures in the
same or lower layer, such as the same or lower temporal layer,
as compared to the layer i, that precedes a picture in decoding
order and follows that picture in output order.

In an embodiment, if the number is not greater than the
value as determined in the comparison of step S2 the method

10

20

40

45

60

65

12

preferably ends and no picture is output or marked. Thus, in
such a case, steps S3 and S4 are omitted and not performed,
see right hatched line.

In an embodiment, steps S2-S4 could be performed only
once after a current picture has been decoded and stored in the
DPB. Alternatively, the loop formed by steps S2-S4, see left
hatched line, could be performed until the number of pictures
in the DPB that are marked as needed for output is no longer
larger than the value sps_max_num_reorder_pics[Highest-
Tid]. Each time the loop of steps S2-S4 is performed the
number of pictures in the DPB that are marked as needed for
output is reduced by one through the marking, in step S4, of
the picture output in step S3 as not needed for output. This
means that steps S3 or S4 could be performed, after the
current picture has been decoded and stored in the DPB, zero
times, if number=sps_max_num_reorder_pics[HighestTid];
once, if number=sps_max_num_reorder_pics[HighestTid]+
1; or more than once if number>sps_max_num_reorder_pics
[HighestTid]+1, ie. n times if
number=sps_max_num_reorder_pics[HighestTid]+n. Once
the comparison in step S2 determines that the number is no
longer larger than the value sps_max_num_reorder_pics
[HighestTid] the method ends.

The determination of the number of pictures in the DPB
marked as needed for output in step S1 is preferably per-
formed after the current picture has been decoded and stored
in the DPB.

The method as disclosed above and illustrated in FIG. 8 is
preferably performed once for each picture of the video
sequence that is decoded and stored in the DPB. Thus, the
method is preferably instantaneously performed once the cur-
rent pictures is considered as decoded, i.e. after the last
decoding unit of the picture is decoded, and the current
decoded picture is stored in an empty picture storage buffer,
i.e. picture slot, in the DPB.

FIG. 9 is a flow chart of additional, optional steps of the
method in FIG. 8. The method starts in step S10, which
comprises parsing a slice header of the current picture to be
decoded of the video sequence. A next step S11 determines a
reference picture set (RPS) for the current picture based on
the parsed slice header. All pictures in the DPB that are not
present in the RPS are marked as unused for reference in step
S12. A following step S13 comprises outputting zero, one or
many, i.e. more than one, pictures, which are marked as
needed for output, of the pictures in the DPB. This step S13
also comprises marking the output zero, one or many pictures
as not needed for output. Step S14 comprises emptying or
removing, from the DPB, any picture marked as unused for
reference and not needed for output of the pictures in the
DPB. The current picture is then decoded in step S15. The
method then continues to step S1 in FIG. 8. Hence, in this
embodiment determining the number of pictures in step S1,
comparing the number in step S2, outputting the picture in
step S3 and marking the picture in step S4 are performed after
decoding the current picture in step S15.

In addition to decoding the current picture in step S15, this
step preferably also comprises marking the current picture as
used for reference, or in an optional embodiment marking the
current picture as used for short-term reference. The current
picture is preferably also marked as needed for output or not
needed for output according to the value of the variable
PicOutputFlag preferably obtained in step S10.

Generally, a coded video sequence, i.e. bitstream, com-
prises Network Abstraction Layer (NAL) units. Basically,
one NAL unit comprises either a slice with a corresponding
slice header including control information for that slice and
video payload data or the NAL unit comprises a parameter

US 9,407,932 B2

13

set, such as VPS, SPS and Picture Parameter Set (PPS). The
parameter set comprises control information. A picture of the
video sequence may consist of a single slice or multiple
slices. Step S10 of FIG. 9 thereby comprises parsing the slice
header portion of the NAL unit comprising a slice of the
picture. If the picture comprises multiple slices and is thereby
distributed among multiple NAL units comprising a respec-
tive slice header then step S10 is preferably performed for
each slice of the picture. However, steps S11 to S14 are
preferably only performed for one of the slices in the picture,
typically the first slice in the picture.

The slice header parsed in step S10 comprises information
enabling the decoder to generate an RPS. The RPS is a set of
reference pictures associated with the current picture and
consisting of all reference pictures that are prior to the current
picture in decoding order and that may be used for reference,
i.e. inter prediction, of the current picture or any picture in the
video sequence following the current picture in decoding
order.

The information obtained in step S10 and used to deter-
mine the RPS in step S11 may, for instance, comprise an
identifier to a RPS syntax structure included in a parameter
set, such as SPS, applicable to the current slice. An example
of such an identifier applicable for HEVC is short_term_
ref_pic_set_idx. The parameter set then comprises syntax
elements defining one or more RPS, such as num_short_ter-
m_ref_pic_sets defining the number of short_term_ref
pic_set() syntax elements included in the SPS, where the
short_term_ref pic_set() syntax element defines a candidate
RPS for the current picture.

Alternatively, the information obtained in step S10 could
be used directly to determine the RPS in step S11. This
information may, for instance, comprise short_term_ref
pic_set() syntax element, where the short_term_ref pic_
set() syntax element defines the RPS of the current picture.

More information of determining RPS can be found in WO
2013/002700 and sections 7.3.2.2, 7.3.5.1, 7.3.5.2, 7.4.2.2,
7451, 7.45.2 and 8.3.2 in JCTVC-J1003_d7, High effi-
ciency video coding (HEVC) text specification draft 8, B.
Bross et al., JCT-VC of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11 10% Meeting, Stockholm, 11-20 Jul.
2012.

The RPS specifies, as mentioned in the foregoing, the
pictures of the video sequence that are to be kept in the DPB,
i.e. be available for use as reference pictures when decoding
the current picture and/or when decoding pictures following
the current picture in decoding order. This means that any
reference pictures stored in the DPB but not listed in the RPS
will not be used as reference picture anymore. Hence, step
S12 thereby comprises marking such pictures in the DPB but
not identified in the RPS as unused for reference.

The output of pictures in step S13 can comprise outputting
one picture marked as needed for output, outputting more
than one picture marked as needed for output or indeed not
outputting any picture at all. Any pictures output in step S13
are output according to an output order, preferably output in
the order of smallest value of Picture Order Count (POC).

Any picture output in step S13 is then marked as not needed
for output since the picture has then been output. If zero
pictures are output no marking is of course performed in this
step S13.

Pictures that are marked as unused for reference and not
needed for output are no longer need, neither as reference
pictures nor for output. Accordingly, step S14 empties or
removes any such marked pictures from the DPB to thereby
free a picture storage buffer, i.e. picture slot, in the DPB.

20

25

30

35

40

45

55

14

Decoding of the current picture is performed according to
well-known methods of picture decoding, such as specified in
the HEVC/H.265 standard. Hence, the decoding in step S35
involves generating pixels values of the pixels or samples in
the current picture, typically using pixel values of one or more
previously decoded pictures stored in the DPB as reference
pictures.

In the embodiment as shown in FIG. 9, the method as
shown in FIG. 8 and comprising steps S1-S4 could be
regarded as an additional or further picture output process,
which has been mentioned in the foregoing as picture output
process #2. This embodiment thereby enables output of pic-
tures in step S3 even after the current picture has been
decoded in step S15 but prior to starting processing a next
picture in the bitstream, i.e. prior to performing step S10 for
a next picture in decoding order.

FIG. 14 summarizes this embodiment. Hence, in one
embodiment an additional picture output process step is
added after picture decoding in order to allow earlier output of
pictures, see FIG. 14. A decoder method may contain and/or
a decoder may be configured to perform the following
ordered steps according to the embodiment:

1. The slice header, including the RPS, of the first slice

header of a picture P is parsed.

2. A picture marking process is done, e.g. pictures may be
marked unused for reference by the RPS from the slice
header.

3. A picture output process is done in which pictures may
be output.

4. Picture P is decoded.

5. After picture P is decoded, the decoder determines the
number of pictures in the DPB that are marked as needed
for output and compares that number against a value that
is derived from syntax elements, exemplified by
sps_max_num_reorder_pics[HighestTid], in the bit-
stream.

6. If the number of pictures in the DPB marked as needed
for output is greater than the value that is derived from
syntax elements in the bitstream, the picture of the pic-
tures in the DPB marked as needed for output which is
the first picture in output order is output and marked as
not needed for output. Thus, according to the embodi-
ment the picture output process #2 is introduced.

7. The next picture Q is decoded by repeating steps 1-6
above for picture Q.

The method as disclosed in FIG. 8 could also be imple-
mented as part of a modified output process, such as for
HEVC. In this approach, the existing picture output process
step is modified in order to allow earlier output of pictures.

The modification provides a solution to the problem with
no_output_of_prior_pics_flag as discussed in the back-
ground section. The solution is similar to the embodiments
discussed above but with the change that instead of adding an
additional output process, the existing HEVC output process
is modified when no_output_of_prior_pics_flagis equalto 1.

FIG. 10 is a flow chart of an additional, optional step of the
method in FIG. 8 when implementing the above-mentioned
embodiment. Step S20 comprises parsing a slice header of a
random access picture (RAP), also referred to as intra random
access point (IRAP) picture in the art, of the video sequence
to obtain a value of a no_output_of_prior_pics_flag flag. If
the value of the no_output_of_prior_pics_flag flag is 1 the
method continues to step S1 of FIG. 8. Hence, in this embodi-
ment, determining the number in step S1, comparing the
number in step S2, outputting the picture in step S3 and
marking the picture in step S4 are performed if the value of the
no_output_of_prior_pics_flag is one.

US 9,407,932 B2

15

Correspondingly, if the value of the no_output_of
prior_pics_flag value is zero (0) the method ends and the
modified output process is not performed.

When this embodiment is applied to HEVC the method
preferably comprises the additional steps of determining a
RPS for the random access picture based on the slice header
parsed in step S20 (compare with step S11 in FIG. 9). The
method also comprises marking all pictures in the DPB that
are not listed in the RPS as unused for reference (compare
with step S12 in FIG. 9). The random access picture is
decoded (compare with step S15 in FIG. 9). In this embodi-
ment, determining the number in step S1, comparing the
number in step S2, outputting the picture in step S3 and
marking the picture in step S4 are performed after marking
the pictures not listed in the RPS but prior to decoding the
random access picture.

FIG. 15 is a simplified decoding flow chart of this embodi-
ment. A decoder method may contain and/or a decoder may
be configured to perform the following ordered steps accord-
ing to the embodiment:

1) The slice header of the first slice header of a picture P is

parsed.

2) A picture marking process is done.

3) A picture output process is done in which pictures may
be output. The picture output process is modified such
that if no_output_of_prior_pics_flag is equal to 1, the
following applies:

a. The decoder determines the number of pictures in the
DPB that are marked as needed for output and com-
pares that number against a value that is derived from
syntax elements in the bitstream,

b. Ifthe number of pictures in the DPB marked as needed
for output is greater than the value that is derived from
syntax elements in the bitstream, the picture of the
pictures in the DPB marked as needed for output
which is first in output order is output and marked as
not needed for output.

c. All remaining pictures in the DPB that are marked as
needed for output are marked as not needed for out-
put. They are not output.

4) Picture P is decoded.

FIG. 11 is a flow chart of a method performed by a decoder
according to another embodiment. The method comprises
parsing a slice header of a current picture to be decoded of a
video sequence in step S30. A RPS is determined for the
current picture based on the parsed slice header in step S31.
The following step S32 comprises marking all pictures in the
DPB that are not present in the RPS as unused for reference.
Zero, one or many pictures marked as needed for output of the
pictures in the DPB are output and marked as not needed for
output in step S33. The following step S34 comprises emp-
tying or removing any picture, from the DPB, which is
marked as unused for reference and not needed for output of
the pictures in the DPB. The current picture is then decoded in
step S35.

These steps S30 to S35 basically correspond to steps S10-
S15 discussed in the foregoing and illustrated in FIG. 9.

The method then continues to step S36, which comprises
determining a number of pictures in the DPB that are marked
as needed for output. This number is compared in step S37
against a value derived from at least one syntax element
present in a bitstream representing pictures of the video
sequence. If the number is greater than the value the method
continues to steps S38 and S39. Step S38 comprises output-
ting a picture, which is the first picture in output order, of the

10

15

20

25

30

35

40

45

50

55

60

65

16

pictures in the DPB that are marked as needed for output. Step
S39 comprises marking the picture, output in step S38, as not
needed for output.

In this embodiment, determining the number of pictures in
step S37, comparing the number in step S38, outputting the
picture in step S38 and marking the picture in step S39 are
performed after decoding the current picture in step S35.

Steps S36 to S39 correspond to steps S1 to S4 discussed in
the foregoing and shown in FI1G. 8 but with a difference in that
the value against which the determined number is compared
in step S37 does not necessarily have to be sps_max_
num_reorder_pics|HighestTid] but could instead be a value
derived from (an) other syntax element(s) present in the bit-
stream, which is further discussed below.

In an embodiment, if the number is not greater than the
value as determined in the comparison of step S37 the method
preferably ends and no picture is output or marked. Thus, in
such a case, steps S38 and S39 are omitted and not performed,
see right hatched line.

In an embodiment, steps S37-S39 could be performed only
once after a current picture has been decoded and preferably
stored in the DPB. Alternatively, the loop formed by steps
S37-S39, see left hatched line, could be performed until the
number of pictures in the DPB that are marked as needed for
output is no longer larger than the value. Each time the loop of
steps S37-S39 is performed the number of pictures inthe DPB
that are marked as needed for output is reduced by one
through the marking, in step S39, of the picture, output in step
S38, as not needed for output.

FIG. 12 is a flow chart of additional, optional steps of the
method in FIG. 11 but also applicable to the embodiments as
shown in FIGS. 8 and 9. The method continues from step S35
in FIG. 11 or step S15 in FIG. 9, in which the current picture
was decoded. A next step S40 comprises storing the decoded
current picture in the DPB in an empty picture storage buffer,
i.e. picture slot. The decoded current picture is marked in step
S41 as needed for output or as not needed for output. The
picture is optionally also marked as used for short-term ref-
erence, i.e. used as reference picture. This step S41 is prefer-
ably performed based on a PicOutputFlag assigned to the
current picture. Thus, if the flag has a value of 1 then the
decoded current picture is marked as needed for output and
otherwise, i.e. the flag has a value of 0, the decoded current
picture is marked as not needed for output. The PicOutput-
Flag may be derived from syntax element in the bitstream
applicable to the present current picture, such as based on the
syntax element pic_output_flag that may be present in the
slice header of the current picture.

The method then continues to step S36 of FIG. 11 or step
S10ofFIG. 8, where the number of pictures in the DPB marked
as needed for output is determined.

Herein various embodiments of selecting the value used in
the comparison in step S37 of FIG. 11 and in step S2 of FIG.
8 will be described.

In an embodiment, the video sequence is a multi-layer
video sequence comprising multiple layers of pictures. Each
layer of the multiple layers then has an associated syntax
element defining a respective value used in the output pro-
cess. The method further comprises an additional, optional
step as shown in the flow chart of FIG. 13. The method
continues from step S35 in FIG. 11 or from step S1 in FIG. 8.
A next step S50 comprises selecting a value derived from a
syntax element associated with a highest layer that is decoded
by the decoder of the multiple layers. The method then con-
tinues to step S37 in FIG. 11 or step S2 in FIG. 8 where this
selected value is used.

US 9,407,932 B2

17

Step S37 and step S2 preferably comprise, in this embodi-
ment, comparing the number determined in step S36 or S1
against a value of sps_max_num_reorder_pics[HighestTid].
If the number is larger than the value sps_max_num_
reorder_pics[HighestTid] the method continues to step S38
or S3, which comprise, in this embodiment, outputting a
picture in the DPB with a smallest value of PicOrderCntVal of
all pictures in the DPB that are marked as needed for output.
PicOrderCntVal represents a picture order count value of the
picture, which in turn preferably defines the output order of
pictures stored in the DPB.

In a particular implementation aspect of this embodiment,
the video sequence is a multi-layer video sequence compris-
ing multiple layers of pictures. In such a case, each layer has
a respective value, i.e. sps_max_num_reorder_pics[i] for
layer number i. The value to use is then the value associated
with the highest decoded layer, i.e. the highest layer that is
decoded by the decoder, such as the highest sub-layer if the
layers are different temporal layers.

In another embodiment, the video sequence is a multi-layer
video sequence comprising multiple layers of pictures. Each
layer of the multiple layers then has an associated syntax
element defining a respective value. The method further com-
prises an additional, optional step as shown in the flow chart
of FIG. 13. The method continues from step S36 in FIG. 11.
A next step S50 comprises selecting a value derived from a
syntax element associated with a highest layer of the multiple
layers. The method then continues to step S37 where this
selected value is used.

Step S37 preferably comprises, in this embodiment, com-
paring the number determined in step S36 against a value of
sps_max_num_reorder_pics[sps_max_sub_layers_minusl].
If the number is larger than the value sps_max_num_
reorder_pics[sps_max_sub_layers_minus1] the method con-
tinues to step S38, which comprise, in this embodiment,
outputting a picture in the DPB with a smallest value of
PicOrderCntVal of all pictures in the DPB that are marked as
needed for output. The syntax element sps_max_sub_lay-
ers_minus] specifies a maximum number of layers of the
video sequence.

In a particular implementation aspect of this embodiment,
the video sequence is a multi-layer video sequence compris-
ing multiple layers of pictures. In such a case, each layer has
a respective value, i.e. sps_max_num_reorder_pics[i] for
layer number i. The value to use is then the value associated
with the highest layer in the bitstream.

In a further embodiment, the video sequence is a multi-
layer video sequence comprising multiple layers of pictures.
Each layer of the multiple layers then has an associated syntax
element defining a respective value. The method further com-
prises an additional, optional step as shown in the flow chart
of FIG. 13. The method continues from step S36 in FIG. 11.
A next step S50 comprises selecting a value derived from a
syntax element associated with a layer of the multiple layers
to which the decoded current picture belongs. The method
then continues to step S37 where this selected value is used.

In yet another embodiment, the video sequence is a multi-
layer video sequence comprising multiple layers of pictures.
Each layer of the multiple layers then has an associated syntax
element defining a respective value. The method further com-
prises an additional, optional step as shown in the flow chart
of FIG. 13. The method continues from step S36 in FIG. 11.
A next step S50 comprises selecting a maximum value of the
respective values.

The method as shown in FIG. 11 can be applied to a current
picture that is a random access picture of the video sequence.
Insuch acase, step S30 preferably comprises parsing the slice
header of the random access picture to obtain a value of a

10

20

25

30

40

45

55

18

no_output_prior_flag flag. In such a case, determining the
number in step S36, comparing the number in step S37,
outputting the picture in step S38 and marking the picture in
step S39 could be conditional based on the value of this flag.
Hence, in an optional embodiment these steps S36-S39 are
performed if the value of the no_output_prior_flag flag is 1.

In an embodiment, marking the picture as performed in
step S12 of FIG. 9 and S32 of FIG. 11 preferably comprises
marking all pictures in the DPB that are not present in the RPS
asunused for reference. These steps optionally also comprise
marking all pictures in the DPB that are present in the RPS as
used for reference. However, generally a picture is marked as
used for reference once it is decoded and stored in the DPB.
Hence, step S12 and S32 typically involve remarking pictures
that no longer are needed for reference.

In an embodiment, outputting the picture as performed in
step S3 of FIG. 8 and step S38 of FIG. 11 preferably com-
prises outputting a picture with smallest picture order count
value of the pictures in the DPB that are marked as needed for
output if the number is greater than the value as determined in
step S2 or S37. The picture order count value is preferably
represented by the parameter PicOrderCntVal.

In an embodiment, outputting the picture as performed in
step S3 of FIG. 8 and step S38 of FIG. 11 is preferably
performed before parsing a slice header of a next picture to be
decoded of the coded video sequence.

In an embodiment, the method as performed in FIG. 8 orin
FIG. 11 comprises the additional step of retrieving the at least
one syntax element from a parameter set associated with the
bitstream and selected from a group consisting of a PPS, a
SPS and a VPS. A PPS is identified based on a PPS identifier
present in the slice header of the current picture. A SPS that
applies to the current picture is identified by a SPS identifier
present in the PPS identified by the PPS identifier present in
the slice header of the current picture. Correspondingly, a
VPS that applies to the current picture is identified by a VPS
identifier present in the SPS that applies to the current picture.
In a particular embodiment, the at least one syntax element is
retrieved from a SPS.

A particular embodiment, which is applicable to an imple-
mentation using no_output_prior_pics_flag, comprises an
additional step of preferably marking all remaining pictures
in the DPB marked as needed for output as not needed for
output if the no_output_prior_pics_flag flag is one.

In a related embodiment, the method comprises the further
step of emptying all pictures in the DPB without output of any
pictures if the no_output_prior_pics_flag flag is one. The
fullness of the DPB is then set equal to zero to indicate the
DPB is empty.

Here below various example embodiments will be further
discussed.

Example Embodiment 1

In one embodiment, an additional picture output process
step is added after picture decoding in order to allow earlier
output of pictures, see FIG. 14.

A decoder method may contain and/or a decoder may be
configured to perform the following ordered steps according
to the embodiment:

1. The slice header of the first slice header of picture P is

parsed,

2. A picture marking process is done,

3. A picture output process is done in which pictures may

be output.

4. Picture P is decoded,

5. After picture P is decoded, the decoder determines the

number of pictures in the DPB that are marked “needed
for output” and compares that number against a value

US 9,407,932 B2

19

that is derived from syntax elements (exemplified by
embodiment 9) in the bitstream,

6. If the number of pictures in the DPB marked “needed for
output” is greater than the value that is derived from
syntax elements in the bitstream, the picture of the pic-
tures in the DPB marked “needed for output” which is
the first picture in output order is output and marked “not
needed for output”. Thus, according to the embodiment
the picture output process #2 is introduced.

7. A next picture Q is decoded

Example Embodiment 2

The same as example embodiment 1 where the value is
represented by a single codeword of the syntax element in the
bitstream.

Example Embodiment 3

The same as example embodiment 2 where the value is
represented by a codeword in a sequence parameter set, e.g. a
picture parameter set (PPS), a sequence parameter set (SPS)
or a video parameter set (VPS).

Example Embodiment 4

The same as embodiment 1-3 where there is one layer
dependent value derived per layer in the bitstream and the
value to use in the comparison is the value that is derived for
the same layer as picture P.

Example Embodiment 5

The same as embodiment 1-3 where there is one value
derived per layer in the bitstream and the value to use in the
comparison is the value that is derived for the highest layer in
the bitstream,

Example Embodiment 6

The same as embodiment 1-3 where there is one value
derived per layer in the bitstream and the value to use in the
comparison is the maximum value for all layers.

Example Embodiment 7

The same as embodiment 5 where the highest layer is
defined as the highest sub-layer.
Example Embodiment 8

The same as embodiment 1-7 where first picture in output
order is defined as the picture in the DPB with the smallest
value of PicOrderCntVal. PicOrderCntVal defines the POC
and is described above.

Example Embodiment 9

The same as embodiment 4-8 where the layers are temporal
layers.

Example Embodiment 10

The combination of embodiments 1, 2, 3, 5, 8 and 9 is one
preferred embodiment. Expressing this embodiment in the
current HEVC specification (JCTVC-K0030_v3) could
resultin the following HEVC specification changes in section
C.5.3 where bold text means added text:

C.5.3 Picture Decoding, Marking and Storage and Possible
Output of One Picture

The following happens instantaneously when the last
decoding unit of access unit n containing the current picture is
removed from the CPB.

The current picture is considered as decoded after the last
decoding unit of the picture is decoded. The current decoded
picture is stored in an empty picture storage buffer in the
DPB, and the following applies,
1.—If'the current decoded picture has PicOutputFlag equal to

1, it is marked “needed for output™.
2.—Otherwise (the current decoded picture has PicOutput-

Flag equal to 0), it is marked “not needed for output™.

If the current decoded picture is a reference picture, it is
marked “used for reference”, otherwise (the current decoded
picture is a non-reference picture), it is marked “unused for
reference”.

10

15

20

25

30

35

40

45

50

60

65

20

When the number of pictures in the DPB that are marked
“needed for output” is greater than sps_max_num_
reorder_pics[sps_max_sub_layers_minus1] after the current
decoded picture has been stored in the DPB, the picture in the
DPB with the smallest value of PicOrderCntVal of all pictures
in the DPB is cropped, output and marked “not needed for
output”.

Example Embodiment 11

The combination of embodiments 1, 2, 3, 7, 8 and 9 is
another preferred embodiment. Expressing this embodiment
in the current HEVC specification (JCTVC-K0030_v3)
could result in the following HEVC specification changes in
section C.5.3 where bold text means added text:

C.5.3 Picture Decoding, Marking and Storage and Possible
Output of One Picture

The following happens instantaneously when the last
decoding unit of access unit n containing the current picture is
removed from the CPB.

The current picture is considered as decoded after the last
decoding unit of the picture is decoded. The current decoded
picture is stored in an empty picture storage buffer in the
DPB, and the following applies.
1.—Ifthe current decoded picture has PicOutputFlag equal to

1, it is marked “needed for output”.
2.—Otherwise (the current decoded picture has PicOutput-

Flag equal to 0), it is marked “not needed for output™.

If the current decoded picture is a reference picture, it is
marked “used for reference”, otherwise (the current decoded
picture is a non-reference picture), it is marked “unused for
reference”.

When the number of pictures in the DPB that are marked
“needed for output” is greater than sps_max_num_
reorder_pics[HighestTid] after the current decoded picture
has been stored in the DPB, the picture in the DPB with the
smallest value of PicOrderCntVal of all pictures in the DPB is
cropped, output and marked “not needed for output™.
Example Embodiment 12

In one embodiment, the existing picture output process
step is modified in order to allow earlier output of pictures, see
FIG. 15.

The modification provides a solution to the problem with
no_output_of_prior_pics_flag as described above. The solu-
tion is similar to example embodiments 1-11 but with the
change that instead of adding an additional output process,
the existing HEVC output process is modified when no_out-
put_of_prior_pics_flag is equal to 1 as shown below.

A decoder method may contain and/or a decoder may be
configured to perform the following ordered steps according
to the embodiment:

1. The slice header of the first slice header of picture P is

parsed.

2. A picture marking process is done.

3. A picture output process is done in which pictures may
be output. The picture output process is modified such
that if no_output_of_prior_pics_flag is equal to 1, the
following applies:

a. The decoder determines the number of pictures in the
DPB that are marked “needed for output” and com-
pares that number against a value that is derived from
syntax elements in the bitstream.

b. If the number of pictures in the DPB marked “needed
for output” is greater than the value that is derived
from syntax elements in the bitstream, the picture of
the pictures in the DPB marked “needed for output”
which s first in output order is output and marked “not
needed for output™.

US 9,407,932 B2

21

c. All remaining pictures in the DPB that are marked
“needed for output” are marked “not needed for out-
put”. They are not output.

4. Picture P is decoded.

The example embodiments 2-12 apply also to this example
embodiment 12.

Example Embodiment 13
The combination of example embodiment 12 and example

embodiments 2, 3, 7, 8 and 9 is a preferred embodiment.

Expressing this embodiment in the current HEVC specifica-

tion (JCTVC-K0030_v3) could result in the following HEVC

specification changes in section C.3.1 where bold text means
added text:

C.3.1 Removal of Pictures from the DPB
The removal of pictures from the DPB before decoding of

the current picture (but after parsing the slice header of the

first slice of the current picture) happens instantaneously at
the CPB removal time of the first decoding unit of access unit

n (containing the current picture) and proceeds as follows.
The decoding process for reference picture set as specified

in subclause 8.3.2 is invoked.

If the current picture is an IDR or a BLA picture, the
following applies:

1. When the IDR or BLA picture is not the first picture
decoded and the value of pic_width_in_luma_samples or
pic_height_in_luma_samples or sps_max_dec_
pic_buffering[i] for any possible value ofi derived from the
active sequence parameter set is different from the value of
pic_width_in_luma_samples or pic_height_in_lu-
ma_samples or sps_max_dec_pic_buffering[i] derived
from the sequence parameter set that was active for the
preceding picture, respectively, no_output_of prior_
pics_{flag is inferred to be equal to 1 by the HRD, regardless
of the actual value of no_output_of_prior_pics_flag.
NOTE—Decoder implementations should try to handle

picture or DPB size changes more gracefully than the HRD in

regard to changes in pic_width_in_luma_samples,
pic_height_in_luma_samples, or sps_max_dec_pic_buffer-
ing[i].

2. When no_output_of_prior_pics_flag is equal to 1 or is
inferred to be equal to 1, the following ordered steps apply:
1. When the number of pictures in the DPB that are marked

“needed for output™ is greater than sps_max_num_reor-

der_pics[HighestTid], the picture in the DPB with the

smallest value of PicOrderCntVal of all pictures in the

DPB is cropped, output and marked “not needed for

output”.

2. All picture storage buffers in the DPB are emptied with-

out output of the pictures they contain, and DPB fullness

is set to 0,

All pictures k in the DPB, for which all of the following
conditions are true, are removed from the DPB:

picture k is marked “unused for reference”,

picture k has PicOutputFlag equal to O or its DPB output

time is less than or equal to the CPB removal time of the

first decoding unit (denoted as decoding unit m) of the
current picture n; i.e. t,, ,,(k) <=t,(m)

When a picture is removed from the DPB, the DPB fullness
is decremented by one.

An advantage of embodiments as disclosed herein over the
prior art as represented by section C.5.1 on pages 216-217 in
JCTVC-K0030_v3 will be described below with reference to
FIG. 30. The prior art solution in JCTVC-K0030_v3 uses the
parameter sps_max_num_reorder_pics[TemporallD] to
determine whether to output any picture. In particular,
JCTVC-K0030_v3 states that when the number of pictures in
the DPB that are marked as needed for output is greater than

20

25

40

45

50

22

sps_max_num_reorder_pics[TemporallD] then the bumping
process specified in subclause C.5.2.1 is invoked repeatedly
until there is an empty picture storage buffer to store the
current decoded picture.

The numbers presented in FIG. 30 indicate the decoding
order of the pictures in the video sequence. The pictures
should be output from left to right, i.e. 10, b5, B3, b6, B2, b7,
B4, B8 and B1. The figure also indicates the layer number, i.e.
Temporalld, for the different layers and the parameter
sps_max_num_reorder_pics for each layer. If one would
bump or output pictures in connection with parsing of slice
headers using sps_max_num_reorder_pics| TemporallD] as
suggested in JCTVC-K0030_v3 then the output process will
be according to below:

Picture Not output yet sps_max_num_reorder_pics Action

10 — 0 No action

B1 10 0 Output I0

B2 B1 1 No action

B3 B1 B2 2 No action

B4 B1 B2 B3 2 Output B3
However, outputting picture B3 when processing picture

B4 is incorrect since picture b5 should be output prior to
picture B3.

If using an embodiment as disclosed herein with bumping,
i.e. outputting, after decoding of the current picture and using
HighesTId=3 then the following result is achieved.

Picture Not output yet sps_max_num_reorder_pics Action

10 10 4 No action
B1 10 B2 4 No action
B2 10 B1 B2 4 No action
B3 10 B1 B2 B3 4 No action
B4 10 B1 B2 B3 B4 4 Output I0
B5 B1 B2B3 B4b5 4 Output b5

If one uses temporal scaling and only decodes layers 0-2

then HighesTid is 2 and the following result is achieved
according to an embodiment:

Picture Not output yet sps_max_num_reorder_pics Action

10 10 2 No action
B1 10 B1 2 No action
B2 10 B1 B2 2 Output 10
B3 B1B2B3 2 Output B3
B4 B1 B2 B4 2 Output B2

Hence, embodiments as disclosed herein are able to output
pictures in correct order in the example as illustrated in FIG.
30, whereas the prior art solution in JCTVC-K0030_v3 does
not give the correct output order when invoking the pumping
process after parsing of slice headers.

The steps, functions, procedures, modules and/or blocks
described above in connection with FIGS. 8-15 may be
implemented in hardware using any conventional technology,
such as discrete circuit or integrated circuit technology,
including both general-purpose electronic circuitry and appli-
cation-specific circuitry.

Particular examples include one or more suitably config-
ured digital signal processors and other known electronic
circuits, e.g. discrete logic gates interconnected to perform a
specialized function, or Application Specific Integrated Cir-
cuits (ASICs).

US 9,407,932 B2

23

Alternatively, at least some of the steps, functions, proce-
dures, modules and/or blocks described above in connection
with FIGS. 8-15 may be implemented in software such as a
computer program for execution by suitable processing cir-
cuitry including one or more processors.

The processor is capable of executing software instructions
contained in a computer program stored in a computer pro-
gram product e.g. in the form of the memories. The respective
computer program product can be a memory being any com-
bination of Random Access Memory (RAM) and Read-Only
Memory (ROM). The respective memory comprises persis-
tent storage, which, for example, can be any single one or
combination of magnetic memory, optical memory, solid
state memory or even remotely mounted memory.

The flow diagram or diagrams presented above and shown
in FIGS. 8-15 may therefore be regarded as a computer flow
diagram or diagrams, when performed by one or more pro-
cessors. A corresponding apparatus may be defined as a group
of function modules, where each step performed by the pro-
cessor corresponds to a function module. In this case, the
function modules are implemented as a computer program
running on the processor.

Examples of processing circuitry includes, but is not lim-
ited to, one or more microprocessors, one or more Digital
Signal Processors (DSPs), one or more Central Processing
Units (CPUs), video acceleration hardware, and/or any suit-
able programmable logic circuitry such as one or more Field
Programmable Gate Arrays (FPGAs), or one or more Pro-
grammable Logic Controllers (PLCs).

It should also be understood that it may be possible to
re-use the general processing capabilities of any conventional
device or unit in which the proposed technology is imple-
mented. It may also be possible to re-use existing software,
e.g. by reprogramming of the existing software or by adding
new software components.

According to an aspect, a decoder configured to perform a
method according to any of the embodiments disclosed above
is provided. The decoder is configured to determine, after a
current picture of a bitstream representing pictures of a video
sequence has been decoded and stored in a DPB, a number of
pictures in the DPB that are marked as needed for output. The
decoder is also configured to compare the number against a
value sps_max_num_reorder_pics[HighestTid]. The decoder
is further configured to output a picture, which is a first picture
in output order, of the pictures in the DPB that are marked as
needed for output if the number is greater than the value. The
decoder is additionally configured to mark the (output) pic-
ture as not needed for output if the number is greater than the
value.

The decoder 100 comprises, in an embodiment, a processor
110 configured to perform the method steps previously dis-
closed herein, see FIG. 8 and optionally FIGS. 9, 10 and
12-14. The decoder 100 may also comprise a memory 120
connected to the processor 110, see FIG. 16.

FIG. 16 is a schematic block diagram of a decoder 100
according to an embodiment. The decoder 100 is configured
to receive a bitstream 10 representing pictures of a video
sequence and decode the bitstream 10. The decoder 100 com-
prises a processor 110 and a memory 120 comprising a DPB
125. The processor 110 is configured to determine, after the
current picture has been decoded and stored in the DPB 125,
the number of pictures in the DPB 125 that are marked as
needed for output. The processor 110 is also configured to
compare the number against the value sps_max_num_reor-
der_pics[HighestTid] 14. The processor 110 is further con-
figured to output the picture, which is a first picture in output
order, of the pictures in the DPB 125 that are marked as

10

15

20

25

30

35

40

45

50

55

60

65

24

needed for output if the number is greater than the value. The
processor 110 is additionally configured to mark the picture
as not needed for output if the number is greater than the
value.

In FIG. 16, the decoder 100 has been illustrated as com-
prising a processor 110. This processor 110 could be imple-
mented as a single processor or multiple processors, such as
in the form of a processing circuitry.

FIG. 16 thereby illustrates a computer implementation of
the decoder 100. In this particular example, at least some of
the steps, functions, procedures, modules and/or blocks
described above are implemented in a computer program,
which is loaded into the memory 120 for execution by the
processor 110. The processor 110 and memory 120 are inter-
connected to each other to enable normal software execution.
An optional input/output device (not shown) may also be
interconnected to the processor 110 and/or the memory 120 to
enable input of a bitstream 10 of coded pictures and output of
decoded pictures.

The term ‘computer’ should be interpreted in a general
sense as any system, device or apparatus capable of executing
program code or computer program instructions to perform a
particular processing, determining or computing task.

In an embodiment, the processor 110 is preferably config-
ured to parse a slice header 12 of the current picture to be
decoded of the video sequence. The processor 110 is also
configured to determine a RPS for the current picture based
on the parsed slice header 12. The processor 110 is further
configured to mark all pictures in the DPB 125 that are not
present in the RPS as unused for reference. The processor 110
is additionally configured to output zero, one or many pic-
tures, marked as needed for output, of the pictures in the DPB
125 and mark the zero, one or many pictures as not needed for
output. The processor 110 is preferably also configured to
empty or remove, from the DPB 125, any picture marked as
unused for reference and not needed for output of the pictures
in the DPB 125. The processor 110 is further configured to
decode the current picture, preferably using video payload
data 16 provided in coded form. In this embodiment, the
processor 110 is configured to determine the number of pic-
tures, compare the number, output the picture and mark the
picture after decoding the current picture.

In an embodiment, the processor 110 is optionally config-
ured to parse a slice header 12 of a random access picture of
the video sequence to obtain a value of no_output_prior_pic-
s_flag flag. In such a case, the processor 110 is optionally
configured to determine the number, compare the number,
output the picture and mark the picture if (and only if) the
value of no_output_prior_pics_flag flag is one.

Another aspect of the embodiments relates to a decoder
configured to parse a slice header of a current picture to be
decoded of'a video sequence. The decoder is also configured
to determine a RPS for the current picture based on the parsed
slice header. The decoder is further configured to mark all
pictures in the DPB that are not present in the RPS as unused
for reference. The decoder is additionally configured to out-
put zero, one or many pictures, marked as needed for output,
of the pictures in the DPB and mark the zero, one or many
pictures as not needed for output. The decoder is preferably
also configured to empty or remove, from the DPB, any
picture marked as unused for reference and not needed for
output of the pictures in the DPB. The decoder is further
configured to decode the current picture. In this embodiment,
the decoder is configured to determine a number of pictures in
the DPB that are, marked as needed for output. The decoder is
also configured to compare the number against a value
derived from at least one syntax element present in the bit-

US 9,407,932 B2

25

stream. The decoder is further configured to output a picture,
which is a first picture in output order, of the pictures in the
DPB that are marked as needed for output if the number is
greater than the value. The decoder is additionally configured
to mark the picture as not needed for output if the number is
greater than the value. This means that in this embodiment,
the decoder is configure determine the number of pictures,
compare the number, output the picture and mark the picture
after decoding the current picture.

The encoder 100 comprises, in an embodiment, a processor
110 configured to perform the method steps previously dis-
closed herein, see FIG. 11 and optionally FIGS. 12,13 and 15.
The encoder 100 may also comprise a memory 120 connected
to the processor 110, see FIG. 16.

In this embodiment, the decoder 100 therefore comprises a
processor 110 and a memory 120 comprising a DPB 125. The
processor 110 is configured to parse the slice header 12 of the
current picture to be decoded of the video sequence. The
processor 110 is also configured to determine the RPS for the
current picture based on the parsed slice header 12. The
processor 110 is further configured to mark all pictures in the
DPB 125 that are not present in the RPS as unused for refer-
ence. The processor 110 is additionally configured to output
7ero, one or many pictures, marked as needed for output, of
the pictures in the DPB 125 and mark the zero, one or many
pictures as not needed for output. The processor 110 is pref-
erably also configured to empty or remove, from the DPB
125, any picture marked as unused for reference and not
needed for output of the pictures in the DPB 125. The pro-
cessor 110 is further configured to decode the current picture.
In this embodiment, the processor 110 is configured to deter-
mine the number of pictures in the DPB 125 that are marked
as needed for output. The processor 110 is also configured to
compare the number against the value derived from at least
one syntax element 14 present in the bitstream 10. The pro-
cessor 110 is further configured to output the picture, which is
a first picture in output order, of the pictures in the DPB 125
that are marked as needed for output if the number is greater
than the value. The processor 110 is additionally configured
to mark the picture as not needed for output if the number is
greater than the value. This means that in this embodiment,
the processor 110 is configure determine the number of pic-
tures, compare the number, output the picture and mark the
picture after decoding the current picture.

In an embodiment, the processor 110 is preferably config-
ured to store the decoded current picture in the DPB 125 and
mark the decoded current picture as needed for output or as
not needed for output as previously disclosed herein.

The processor 110 is, in an implementation embodiment,
preferably configured to compare the number against a value
sps_max_num_reorder_pics[HighestTid]. In this implemen-
tation embodiment, the processor 110 is configured to output
a picture in the DPB 125 with a smallest value of PicOrder-
CntVal of all pictures in DPB 125 that are marked as needed
for output if the number is greater than the value sps_
max_num_reorder_pics[HighestTid)].

In another implementation embodiment, the current pic-
ture is a random access picture of the video sequence. In such
a case, the processor 110 is optionally configured to parse the
slice header 12 of the random access picture to obtain a value
of a no_output_prior_pics_flag flag. The processor 110 is
then optionally configured to determine the number, compare
the number, output the picture and mark the picture if the
value of the no_output_prior_pics_{flag flag is one.

If'the video sequence is a multi-layer video sequence com-
prising multiple layers of pictures, where each layer of the
multiple layers has an associated syntax element defining a

10

15

20

25

30

35

40

45

50

55

60

65

26

respective value, then the processor 110 is preferably config-
ured to select a value derived from a syntax element, prefer-
ably sps_max_num_reorder_pics, associated with a highest
layer that is decoded by the decoder 100 of the multiple
layers.

In an embodiment, the processor 110 is preferably config-
ured to output a picture with smallest picture order count
value ofthe pictures in DPB 125 that are marked as needed for
output if the number is greater than the value.

In an embodiment, the processor 110 is preferably config-
ured to output the picture before parsing a slice header of a
next picture to be decoded of the video sequence.

FIG. 17 is a schematic block diagram of another imple-
mentation example of the decoder 200. This example is in
particular suitable for a hardware implementation of the
decoder 200. The decoder 200 comprises an input unit 210
configured to receive the bitstream representing pictures of
the video sequence and store the bitstream in a connected
memory 220 comprising the DPB 225. The decoder also
comprises a number determining unit 230 connected to the
memory 220. This number determining unit 230 is configured
to determine, after the current picture has been decoded and
stored in the DPB 225, the number of pictures in the DPB 225
that are marked as needed for output. A comparator 240 is
connected to the number determining unit 230 and configured
to compare the number against the value sps_max_num_re-
order_pics[HighesTid]. The decoder 200 also comprises an
output unit 250 connected to the comparator 240 and prefer-
ably to the memory 220. The output unit 250 is configured to
output the picture, which is a first picture in output order, of
the pictures in the DPB 225 that are marked as needed for
output if the number is greater than the value. A marking unit
260 is connected to the memory 220 and configured to mark
the picture as not needed for output if the number is greater
than the value.

The comparator 240 is preferably connected to the number
determining unit 230 in order to receive the number of pic-
tures determined by the number determining unit 230. Cor-
respondingly, the output unit 250 is preferably connected to
the comparator 240 in order to receive information of whether
the determined number is greater than the value sps_
max_num_reorder_pics[HighesTid] from the comparator
240. The marking unit 260 is preferably connected to the
output unit 250 in order to receive information of which
picture that was output by the output unit 250.

FIG. 18 is a schematic block diagram of yet another imple-
mentation example of the decoder 300. This example is in
particular suitable for a hardware implementation of the
decoder 300. The decoder 300 comprises an input unit 310
configured to receive the bitstream representing pictures of
the video sequence and store the bitstream in a connected
memory 320 comprising the DPB 325. A parsing unit 370
connected to the memory 320 is configured to parse the slice
header of the current picture to be decoded of the video
sequence. The decoder 300 comprises a reference picture set
determining unit 380 connected to the parsing unit 370 and
preferably to the memory 320. The reference picture set deter-
mining unit 380 is configured determine the RPS for the
current picture based on the parsed slice header. A marking
unit 360 is connected to the memory 320 and configured to
mark all pictures in the DPB 325 that are not present in the
RPS as unused for reference. The decoder 300 also comprises
an output unit 350 connected to the memory 320 and prefer-
ably to a comparator 340. The output unit 350 is configured to
output zero, one or many pictures, marked as needed for
output, of the pictures in the DPB 325, wherein the marking
unit 360 is configured to mark the zero, one or many pictures

US 9,407,932 B2

27

as not needed for output. A picture emptying unit 390 is
connected to the memory 320 and configured to empty or
remove, from the DPB 325, any picture marked as unused for
reference and not needed for output of the pictures in the DPB
325. A decoding unit 305 is connected to the memory 320 and
configured to decode the current picture.

The decoder 300 of FIG. 18 also comprises a number
determining unit 330 connected to the memory 320 and pref-
erably also to the parsing unit 370 and the comparator 340.
The number determining unit 330 is configured to determine
the number of pictures in the DPB 325 that are marked as
needed for output. The previously mentioned comparator 340
is configured to compare the number against the value derived
from at least one syntax element present in the bitstream. In
this embodiment the output unit 350 is also configured to
output the picture, which is a first picture in output order, of
the pictures in the DPB 325 that are marked as needed for
output if the number is greater than the value. The marking
unit 360 is also configured to mark the picture as not needed
for output if the number is greater than the value.

In a preferred embodiment, the number determining unit
330 is configured to determine the number of pictures, the
comparator 340 is configured to compare the number, the
output unit 350 is configured to output the picture and the
marking unit 360 is configured to mark the picture after the
decoding unit 305 has decoded the current picture.

The reference picture set determining unit 380 is prefer-
ably connected to the parsing unit 370 in order to receive
information present in the parsed slice header and used in
order to determine the RPS. The reference picture set deter-
mining unit 380 is preferably also connected to the marking
unit 360 in order to provide the RPS or information of the
pictures listed in the RPS to the marking unit 360. The com-
parator 340 is preferably connected to the number determin-
ing unit 330 in order to receive the number of pictures deter-
mined by the number determining unit 330. Correspondingly,
the output unit 350 is preferably connected to the comparator
340 in order to receive information of whether the determined
number is greater than the value from the comparator 340.
The marking unit 360 is preferably connected to the output
unit 350 in order to receive information of which picture that
was output by the output unit 350.

As indicated in the foregoing, the decoder may alterna-
tively be defined as a group of function modules, where the
function modules are implemented as a computer program
running on a processor.

FIG. 16 is a schematic block diagram illustrating an
example of a decoder 100 comprising a processor 110 and an
associated memory 120.

The computer program residing in memory 120 may thus
be organized as appropriate function modules configured to
perform, when executed by the processor 110, at least part of
the steps and/or tasks described above. An example of such
function modules is illustrated in FIG. 19. FIG. 19 is thereby
a schematic block diagram illustrating an example of a
decoder 400 comprising a group of function modules 410-
440. These modules comprise a number determining module
410 for determining, after a current picture of a bitstream
representing pictures of a video sequence has been decoded
and stored in a DPB, a number of pictures in the DPB that are
marked as needed for output. The decoder 400 also comprises
a comparing module 420 for comparing the number, prefer-
ably as received from the number determining module 410,
against a value sps_max_num_reorder_pics[HighesTid]. An
outputting module 430 of the decoder 400 is for outputting a
picture, which is a first picture in output order, of the pictures
in the DPB that are marked as needed for output if the number

20

40

45

28

is greater than the value, optionally but preferably as deter-
mined by the comparing module 420. The decoder 400 fur-
ther comprises a marking module 440 for marking the picture
as not needed for output if the number is greater than the
value, optionally but preferably as determined by the com-
paring module 420.

FIG. 20 is a schematic block diagram illustrating another
example of a decoder 500 with a group of function modules
510-580. The decoder 500 comprises a parsing module 510
for parsing a slice header of a current picture to be decoded of
a bitstream representing pictures of a video sequence. A ref-
erence picture set determining module 520 of the decoder 500
is for determining a RPS for the current picture based on the
slice header, preferably as parsed by the parsing module 510.
The decoder 500 also comprises a marking module 530 for
marking all pictures in a DPB that are not present in the RPS,
optionally but preferably as determined by the reference pic-
ture set determining module 520, as unused for reference and
an outputting module 540 for outputting zero, one or many
pictures, marked as needed for output, of the pictures in the
DPB. In an embodiment, the marking module 530 is further
for marking the zero, one or many pictures as not needed for
output. The decoder 500 further comprises an emptying mod-
ule 550 for emptying or removing, from the DPB, any picture
marked as unused for reference and not needed for output of
the pictures in the DPB and a decoding module 560 for
decoding the current picture. The decoder 500 additionally
comprises a number determining module 560 for determining
anumber of pictures in the DPB that are marked as needed for
output and a comparing module 570 for comparing the num-
ber, optionally but preferably as determined by the number
determining module 560, against a value derived from at least
one syntax element present in the bitstream.

In an embodiment, the outputting module 540 is further for
outputting a picture, which is a first picture in output order, of
the pictures in the DPB that are marked as needed for output
if the number is greater than the value, optionally but prefer-
ably as determined by the comparing module 570. The mark-
ing module 530 is further for marking the picture as not
needed for output if the number is greater than the value,
optionally but preferably as determined by the comparing
module 570.

In an embodiment, the number determining module 570
determining the number of pictures, the comparing module
580 comparing the number, the outputting module 540 out-
putting the picture and the marking module 530 marking said
picture after the decoding module 560 decoding the current
picture.

The embodiments of the decoder 400, 500 as shown in
FIGS. 19 and 20 may optionally also be operable to perform
that various implementation embodiments as previously dis-
closed herein, such as with reference to FIGS. 9, 10, 12-15.

In an embodiment, the computer program comprises pro-
gram code which when executed by a processor 110, see FIG.
16, or computer causes the processor 110 or computer to
perform the steps, functions, procedures and/or blocks
described above and shown in FIGS. 8-15.

The software or computer program may be realized as a
computer program product, which is normally carried or
stored on a computer-readable medium. The computer-read-
able medium may include one or more removable or non-
removable memory devices including, but not limited to a
ROM, aRAM, a Compact Disc (CD), a Digital Versatile Disc
(DVD), a Universal Serial Bus (USB) memory, a Hard Disk
Drive (HDD) storage device, a flash memory, or any other
conventional memory device. The computer program may

US 9,407,932 B2

29

thus be loaded into the operating memory of a computer or
equivalent processing device for execution by the processing
circuitry thereof.

The decoder 100, 200, 300, 400, 500 as shown in FIGS.
16-20 is preferably a HEVC-compliant decoder. It should,
however, be noted that the embodiments are not limited to
HEVC.

According to an aspect, a method performed by an encoder
is provided. In the method, the encoder determines the num-
ber of pictures in the DPB that are marked as needed for
output and compares that number against a value that is
represented by syntax elements in the bitstream. If the num-
ber of pictures in the DPB marked as needed for output is
greater than the value that is derived from syntax elements in
the bitstream, a modified output marking process is per-
formed or the picture of the pictures in the DPB marked as
needed for output which is the first picture in output order is
marked as not needed for output.

FIG. 21 is a flow chart of a method performed by an
encoder according to an embodiment. The method comprises
determining, in step S60 and after a current picture has been
decoded and stored in a DPB, a number of pictures in the DPB
that are marked as needed for output. A next step S61 com-
prises comparing the number against a value sps_max_num-
_reorder_pics[HighestTid], wherein HighestTid specifies a
highest layer that is decoded by the encoder of a video
sequence. If the number is greater than the value the method
continues to step S62, which comprises marking a picture,
which is a first picture in output order, of the pictures in DPB
that are marked as needed for output as not needed for output.

The method as performed in the encoder in FIG. 21 is
basically similar to the corresponding method performed in a
matching decoder, see FIG. 8. A difference is, though, that the
encoder generally does not output any pictures, which is
performed in the decoder. Hence, the embodiment of the
method shown in FIG. 21 preferably lacks the outputting step
S3 of the corresponding method performed by a decoder in
FIG. 8.

In an embodiment, when the current picture has been
decoded, two markings preferably occur, one for output and
one for reference. Hence, in an embodiment these markings
are preferably done prior to step S60 since it affects the
number of pictures that are marked as needed for output. If the
current picture has a PicOutputFlag=1, the current picture is
preferably counted as well.

In an embodiment, if the number is not greater than the
value as determined in the comparison of step S61 the method
preferably ends and no picture is marked. Thus, in such a case,
step S62 is omitted and not performed, see right hatched line.

In an embodiment, steps S61-S62 of FIG. 21 could be
performed only once after a current picture has been decoded
and stored in the DPB. Alternatively, the loop formed by steps
S61-S62, see left hatched line, could be performed until the
number of pictures in the DPB that are marked as needed for
output is no longer larger than the value sps_max_num_reor-
der_pics[HighestTid]. Each time the loop of steps S61-S62 is
performed the number of pictures in the DPB that are marked
as needed for output is reduced by one through the marking in
step S62.

FIG. 22 is a flow chart of a method performed by an
encoder according to another embodiment. The method com-
prises marking, in step S70, all pictures in a DPB that are not
present in a RPS for a current picture of a video sequence set
asunused for reference. The method also comprises marking,
in step S71, zero, one or many pictures, marked as needed for
output, of the pictures in DPB as not needed for output. Any
picture marked as unused for reference and not needed for

10

15

20

25

30

35

40

45

50

55

60

65

30

output of the pictures in the DPB is emptied or removed in
step S72 from the DPB. A following step S73 comprises
decoding the current picture. The method further comprises
determining, in step S74, anumber of pictures in the DPB that
are marked as needed for output and comparing, in step S75,
the number against a value derived from at least one defined
syntax element. If this number is greater than the value the
method continues to step S76, which comprises marking a
picture, which is a first picture in output order, of the pictures
in the DPB that are marked as needed for output as not needed
for output. In a preferred embodiment, determining the num-
ber of pictures in step S74, comparing the number in step S75
and marking the picture in step S76 are performed after
decoding the current picture in step S73.

The method as performed in the encoder in FIG. 22 is
basically similar to the corresponding method performed in a
matching decoder, see FIG. 11. A difference is, though, that
the encoder generally does not output any pictures, which is
performed in the decoder. Hence, the embodiment of the
method shown in FIG. 22 preferably lacks the outputting
steps S33 and S38 of the corresponding method performed by
a decoder in FIG. 11. Furthermore, in the method of FIG. 22
the encoder does not receive any bitstream and thereby does
not need to parse a slice header in order to obtain information
to determine the RPS for the current picture. In clear contrast,
the encoder itself generates and determines the RPS for the
current picture. Hence, steps S30 and S31 of the correspond-
ing method performed by a decoder in FIG. 11 are typically
not performed by the encoder.

In an embodiment, if the number is not greater than the
value as determined in the comparison of step S75 the method
preferably ends and no picture is marked. Thus, in such a case,
step S76 is omitted and not performed, see right hatched line.

In an embodiment, steps S75-S76 could be performed only
once after a current picture has been decoded and stored in the
DPB. Alternatively, the loop formed by steps S75-S76, see
left hatched line, could be performed until the number of
pictures in the DPB that are marked as needed for output is no
longer larger than the value. Each time the loop of steps
S75-S76 is performed the number of pictures in the DPB that
are marked as needed for output is reduced by one through the
marking in step S76.

The embodiments as discussed in the foregoing in connec-
tion with the methods performed by a decoder can also be
performed by the encoder.

For instance, an encoder method may contain and/or an
encoder may be configured to perform the following ordered
steps according to an embodiment:

1 picture P is encoded.

2 Afterthe picture P is encoded, the encoder determines the
number of pictures in the DPB that are marked “needed
for output” and compares that number against a value
that can be derived from syntax elements in the bit-
stream. It should be noted that this refers to the DPB in
the encoder. The DPB status in the encoder and decoder
is the same. The comparison in the decoder will be
exactly the same. The HEVC specification specifies
what the decoder will do but the encoder will have to
keep track of that, i.e. the encoder does what the decoder
will do.

3 If the number of pictures in the DPB marked “needed for
output” is greater than the value that can be derived from
syntax elements in the bitstream, the picture of the pic-
tures in the DPB marked “needed for output” which is

US 9,407,932 B2

31

first in output order is marked “not needed for output™.
The picture may optionally be output from the encoder.

4 A next picture Q is encoded

The steps, functions, procedures, modules and/or blocks
described above in connection with FIGS. 21 and 22 may be
implemented in hardware using any conventional technology,
such as discrete circuit or integrated circuit technology,
including both general-purpose electronic circuitry and appli-
cation-specific circuitry.

Particular examples include one or more suitably config-
ured digital signal processors and other known electronic
circuits, e.g. discrete logic gates interconnected to perform a
specialized function, or ASICs.

Alternatively, at least some of the steps, functions, proce-
dures, modules and/or blocks described above in connection
with FIGS. 21 and 22 may be implemented in software such
as a computer program for execution by suitable processing
circuitry including one or more processors.

The processor is capable of executing software instructions
contained in a computer program stored in a computer pro-
gram product e.g. in the form of the memories. The respective
computer program product can be a memory being any com-
bination of RAM and ROM. The respective memory com-
prises persistent storage, which, for example, can be any
single one or combination of magnetic memory, optical
memory, solid state memory or even remotely mounted
memory.

The flow diagram or diagrams presented above and shown
in FIGS. 21 and 22 may therefore be regarded as a computer
flow diagram or diagrams, when performed by one or more
processors. A corresponding apparatus may be defined as a
group of function modules, where each step performed by the
processor corresponds to a function module. In this case, the
function modules are implemented as a computer program
running on the processor.

Examples of processing circuitry includes, but is not lim-
ited to, one or more microprocessors, one or more DSPs, one
or more CPUs, video acceleration hardware, and/or any suit-
able programmable logic circuitry such as one or more
FPGAs, or one or more PLCs.

It should also be understood that it may be possible to
re-use the general processing capabilities of any conventional
device or unit in which the proposed technology is imple-
mented. It may also be possible to re-use existing software,
e.g. by reprogramming of the existing software or by adding
new software components.

According to an aspect, an encoder configured to perform
the method is provided. The encoder is configured to deter-
mine, after a current picture has been decoded and stored in a
DPB, a number of pictures in the DPB that are marked as
needed for output. The encoder is also configured to compare
the number against a value sps_max_num_reorder_pics
[HighestTid]. The encoder is further configured to mark a
picture, which is a first picture in output order, of the pictures
in the DPB that are marked as needed for output as not needed
for output if the number is greater than the value.

The encoder 600 comprises, in an embodiment, a processor
610 configured to perform the method steps previously dis-
closed herein, see FIG. 21. The decoder 600 may also com-
prise a memory 620 connected to the processor 610, see F1G.
23,

FIG. 23 is schematic block diagram of an encoder 600
according to an embodiment. The encoder 600 is configured
to encode pictures of a video sequence into a bitstream 10.
The encoder 600 comprises a processor 610 and a memory
620. The memory 620 comprises a DPB 625. In an embodi-
ment, the processor 610 is configured to determine, after the

10

15

20

25

30

35

40

45

50

55

60

65

32

current picture has been decoded and stored in the DPB 625,
the number of pictures in the DPB 625 that are marked as
needed for output. The processor 610 is also configured to
compare the number against the value sps_max_num_reor-
der_pics[HighestTid]. The processor 610 is further config-
ured to mark the picture, which is a first picture in output
order, of the pictures in the DPB 625 that are marked as
needed for output as not needed for output if the number is
greater than the value.

In FIG. 23, the encoder 600 has been illustrated as com-
prising a processor 610. This processor 610 could be imple-
mented as a single processor or multiple processors, such as
in the form of a processing circuitry.

FIG. 23 thereby illustrates a computer implementation of
the encoder 600. In this particular example, at least some of
the steps, functions, procedures, modules and/or blocks
described above are implemented in a computer program,
which is loaded into the memory 620 for execution by the
processor 610. The processor 610 and memory 620 are inter-
connected to each other to enable normal software execution.
An optional input/output device (not shown) may also be
interconnected to the processor 610 and/or the memory 620 to
enable input of pictures to be encoded and output of the
bitstream 10

Another aspect of the embodiments relates to an encoder
configured to mark all pictures in a DPB that are not present
in a RPS for a current picture of a video sequence as unused
for reference. The encoder is also configured to mark zero,
one or many pictures, marked as needed for output, of the
pictures in the DPB as not needed for output and empty or
remove, from the DPB, any picture marked as unused for
reference and not needed for output of the pictures in the
DPB. The encoder is further configured to decode the current
picture and determine a number of pictures in the DPB that
are marked as needed for output. The encoder is additionally
configured to compare the number against a value derived
from at least one defined syntax element and mark a picture,
which is a first picture in output order, of the pictures in the
DPB that are marked as needed for output as not needed for
output if the number is greater than the value. In an embodi-
ment, the encoder is configured to determine the number of
pictures, compare the number and mark the picture after
decoding the current picture.

The encoder 600 comprises, in an embodiment, a processor
610 configured to perform the method steps previously dis-
closed herein, see FIG. 22. The decoder 600 may also com-
prise a memory 620 connected to the processor 610, see FI1G.
23.

FIG. 23 is schematic block diagram of an encoder 600
according to an embodiment. The encoder 600 is configured
to encode pictures of a video sequence into a bitstream 10.
The encoder 600 comprises a processor 610 and a memory
620. The memory 620 comprises a DPB 625. In an embodi-
ment, the processor 610 is configured to mark all pictures in
the DPB 625 that are not present in the RPS for the current
picture of the video sequence as unused for reference. The
processor 610 is also configured to mark zero, one or many
pictures, marked as needed for output, of the pictures in the
DPB 625 as not needed for output. The processor 610 is
further configured to empty or remove, from the DPB 625,
any picture marked as unused for reference and not needed for
output of the pictures inthe DPB 625. In this embodiment, the
processor 610 is also configured to decode the current picture
and determine a number of pictures in the DPB 625 that are
marked as needed for output. The processor 610 is further
configured to compare the number against a value derived
from at least one defined syntax element. The processor 610

US 9,407,932 B2

33

is additionally configured to mark a picture, which is a first
picture in output order, of the pictures in the DPB 625 that are
marked as needed for output as not needed for output if the
number is greater than the value. In this embodiment, the
processor 610 is configured to determine the number of pic-
tures, compare the number and mark the picture after decod-
ing the current picture.

FIG. 24 is a schematic block diagram of another imple-
mentation example of the encoder 700. This example is in
particular suitable for a hardware implementation of the
encoder 700. The encoder 700 comprises a number determin-
ing unit 730 connected to a memory 720 comprising the DPB
725. The number determining unit 730 is configured to deter-
mine, after the current picture of the video sequence has been
decoded and stored in the DPB 725, the number of pictures in
the DPB 725 that are marked as needed for output. The
encoder 700 also comprises a comparator 740 connected to
the number determining unit 730 and preferably to the
memory 720. The comparator 740 is configured to compare
the number against the value sps_max_num_reorder_pics
[HighestTid]. A marking unit 760 of the encoder is connected
to the memory 720 and configured to mark the picture, which
is a first picture in output order, of the pictures in the DPB 725
that are marked as needed for output as not needed for output
if the number is greater than the value.

The comparator 740 is preferably connected to the number
determining unit 730 in order to receive the number of pic-
tures determined by the number determining unit 730.

FIG. 25 is a schematic block diagram of yet another imple-
mentation example of the encoder 800 in particular suitable
for a hardware implementation. The encoder 800 comprises a
marking unit 860 connected to a memory 820 comprising the
DPB 825. The marking unit 860 is configured to i) mark all
pictures in the DPB 825 that are not present in the RPS for the
current picture of the video sequence as unused for reference
and ii) mark zero, one or many pictures, marked as needed for
output, of the pictures in the DPB 825 as not needed for
output. A picture emptying unit 890 is connected to the
memory 820 and is configured to empty or remove, from the
DPB 825, any picture marked as unused for reference and not
needed for output ofthe pictures in the DPB 825. The encoder
800 also comprises a decoding unit 805 connected to the
memory 820 and configured to decode the current picture. A
number determining unit 830 of the encoder 800 is connected
to the memory 830 and is configured to determine the number
of pictures in the DPB 825 that are marked as needed for
output. The encoder 800 further comprises a comparator 840
connected to the number determining unit 830 and preferably
to the memory 820. The comparator 840 is configured to
compare the number against the value derived from at least
one defined syntax element. In this embodiment, the marking
unit 860 is also configured to mark the picture, which is a first
picture in output order, of the pictures in DPB 825 that are
marked as needed for output as not needed for output if the
number is greater than the value. In a preferred embodiment,
the number determining unit 830 is configured to determine
the number of pictures, the comparator 840 is configured to
compare the number and the marking unit 840 is configured to
mark the picture after the decoding unit 805 has decoded the
current picture.

The comparator 840 is preferably connected to the number
determining unit 830 in order to receive the number of pic-
tures determined by the number determining unit 830.

As indicated in the foregoing, the encoder may alterna-
tively be defined as a group of function modules, where the
function modules are implemented as a computer program
running on a processor.

10

20

25

30

35

40

45

50

55

60

65

34

FIG. 23 is a schematic block diagram illustrating an
example of an encoder 600 comprising a processor 610 and an
associated memory 620.

The computer program residing in memory 620 may thus
be organized as appropriate function modules configured to
perform, when executed by the processor 610, at least part of
the steps and/or tasks described above. An example of such
function modules is illustrated in FIG. 26. FIG. 26 is thereby
a schematic block diagram illustrating an example of an
encoder 900 comprising a group of function modules 910-
930. These modules comprise a number determining module
910 for determining, after a current picture of a bitstream
representing pictures of a video sequence has been decoded
and stored in a DPB, a number of pictures in the DPB that are
marked as needed for output. The encoder 900 also comprises
a comparing module 920 for comparing the number, option-
ally but preferably as determined by the number determining
module 910, against a value sps_max_num_reorder_pics
[HighesTid]. The encoder 900 further comprises a marking
module 930 for marking a picture, which is a first picture in
output order, of the pictures in the DPB that are marked as
needed for output as not needed for output if the number is
greater than the value, optionally but preferably as deter-
mined by the comparing module 920.

FIG. 27 is a schematic block diagram illustrating another
example of an encoder 1000 with a group of function modules
1000-1050. The encoder 1000 comprises a marking module
1010 for marking all pictures in a DPB that are not present in
a RPS set for a current picture of a video sequence as unused
for reference and marking zero, one or many pictures, marked
as needed for output, of the pictures in the DPB as not needed
for output. The encoder 1000 further comprises an emptying
module 1020 for emptying or removing, from the DPB, any
picture marked as unused for reference and not needed for
output of the pictures in the DPB and a decoding module 1030
for decoding the current picture. The encoder 1000 addition-
ally comprises a number determining module 1040 for deter-
mining a number of pictures in the DPB that are marked as
needed for output and a comparing module 1050 for compar-
ing the number, optionally but preferably as determined by
the number determining module 1040, against a value derived
from at least one syntax element present in the bitstream.

In an embodiment, the marking module 1010 is further for
marking the picture, which is a first picture in output order, of
the pictures in the DPB that are marked as needed for output
as not needed for output if the number is greater than the
value, optionally but preferably as determined by the com-
paring module 1050.

In an embodiment, the number determining module 1040
determining the number of pictures, the comparing module
1050 comparing the number and the marking module 1010
marking said picture after the decoding module 1030 decod-
ing the current picture.

In an embodiment, the computer program comprises pro-
gram code which when executed by a processor 610, see FIG.
23, or computer causes the processor 610 or computer to
perform the steps, functions, procedures and/or blocks
described above and shown in FIG. 21 or 22.

The software or computer program may be realized as a
computer program product, which is normally carried or
stored on a computer-readable medium. The computer-read-
able medium may include one or more removable or non-
removable memory devices including, but not limited to a
ROM, aRAM, a CD, a DVD, a USB memory, a HDD storage
device, a flash memory, or any other conventional memory
device. The computer program may thus be loaded into the

US 9,407,932 B2

35

operating memory of a computer or equivalent processing
device for execution by the processing circuitry thereof.

The encoder 600, 700, 800, 900, 1000 as shown in FIGS.
23-27 is preferably a HEVC-compliant encoder. It should,
however, be noted that the embodiments are not limited to
HEVC.

The decoder 100, 200, 300,400, 500 in any of FIGS. 16-20
and the encoder 600, 700, 800, 900, 1000 in any of FIGS.
23-27 may be implemented, e.g. in a mobile terminal. For
instance, the decoder 100, 200, 300, 400, 500 may, for
example, be located in a receiver in a video camera or any
other device for displaying a video stream. The encoder 600,
700, 800, 900, 1000 may, for example, be located in a trans-
mitter in a video camera in e.g. a mobile device.

FIG. 28 is a schematic block diagram of a mobile terminal
1100 according to an embodiment. The mobile terminal 1100
comprises a decoder 100, 200, 300, 400, 500 according to the
embodiments and/or an encoder 600, 700, 800, 900, 1000
according to the embodiments, such as a decoder as shown in
any of FIGS. 16-20 and/or an encoder as shown in any of
FIGS. 23-27.

The mobile terminal 1100 preferably also comprises an
input and output (I/O) unit 1110 for enabling communication,
typically wireless communication but alternatively, or in
addition, wired communication, with external units. The I/O
unit 1110 could be implemented as a transmitter and a
receiver, or a transceiver, for wireless communication. Alter-
natively, the I/O unit 1110 could be a general 1/O unit or port
1110 capable of conducting wired communication. If the
mobile terminal 1100 is implemented with an encoder 600,
700, 800, 900, 1000, the I/O unit 1110 is preferably config-
ured to transmit or output a bitstream representing a coded
video sequence as generated by the encoder 600, 700, 800,
900, 1000. Correspondingly, if the mobile terminal 1100
comprises a decoder 100, 200, 300, 400, 500, the I/O unit
1110 is preferably configured to receive or input a bitstream
representing a coded video sequence.

The mobile terminal 1100 comprises a memory 1120 con-
figured to store coded pictures of a coded video sequence.
These coded pictures can have been generated by the mobile
terminal 1100 itself. In such a case, the mobile terminal 1100
preferably comprises a media engine or recorder (not shown)
together with a connected encoder 600, 700, 800, 900, 1000.
Alternatively, the coded video sequence is generated by some
other device and transmitted to the mobile terminal 1100.

The coded pictures are brought from the memory 1120 to a
decoder 100, 200, 300, 400, 500. The decoder 100, 200, 300,
400, 500 then decodes the coded pictures into decoded pic-
tures. The decoded pictures are provided to a media player
1130 that is configured to render the decoded pictures of the
video sequence into video data that is displayable on a display
or screen 1140 of or connected to the mobile terminal 1100.

In FIG. 28, the mobile terminal 1100 has been illustrated as
comprising both the decoder 100, 200, 300, 400, 500 and the
media player 1130, with the decoder 100, 200, 300, 400, 500
implemented as a part of the media player 1130. This should,
however, merely be seen as an illustrative but non-limiting
example of an implementation embodiment for the mobile
terminal 1100. Also distributed implementations are possible
where the decoder 100, 200, 300, 400, 500 and the media
player 1130 are provided in two physically separated devices
are possible and within the scope of mobile terminal 1100 as
used herein. The display 1140 could also be provided as a
separate device connected to the mobile terminal 1100, where
the actual data processing is taking place.

The mobile terminal 1100 can be any device having media
decoding functions that operates on a coded video sequence

10

15

20

25

30

35

40

45

50

55

60

65

36

of'coded pictures to thereby decode the pictures and make the
video data available. Non-limiting examples of such mobile
terminals 1100 include mobile telephones and other portable
media players, computers, decoders, game consoles, etc.

The encoder 600, 700, 800, 900, 1000 of the embodiments,
such as shown in any of FIGS. 23-27, and/or the decoder 100,
200, 300, 400, 500 of the embodiments, such as shown in any
of FIGS. 16-20, may be implemented in a network node 2 as
shown in FIG. 29.

As illustrated in FIG. 29, the encoder 600, 700, 800, 900,
1000 and/or decoder 100, 200, 300, 400, 500 may be imple-
mented in a network node 2 in a communication network 1
between a sending unit 3 and a receiving unit 4. Such a
network node 2 may be a device for converting video
between, for instance, different video resolutions, frame
rates, qualities, bit rates, and coding standards. The network
node 2 can be in the form of a radio base station, a Node-B or
any other network node in a communication network 1, such
as a radio-based network.

The encoder and/or decoder of the embodiments may also
be provided in any element that operates on a bitstream, such
as a Media Aware Network Element.

The embodiments are not limited to HEVC but may be
applied to any extension of HEVC, such as a scalable exten-
sion or multiview extension, or to a difference video codec.

The embodiments described above are to be understood as
a few illustrative examples of the present invention. It will be
understood by those skilled in the art that various modifica-
tions, combinations and changes may be made to the embodi-
ments without departing from the scope of the present inven-
tion. In particular, different part solutions in the different
embodiments can be combined in other configurations, where
technically possible. The scope of the present invention is,
however, defined by the appended claims.

The invention claimed is:
1. A method performed by a decoder, said method com-
prises:

determining, after a current picture has been decoded and
stored in a decoded picture buffer, a number of pictures
in said decoded picture buffer that are marked as needed
for output, said current picture belonging to a layer other
than a highest layer that is decoded by said decoder of a
multi-layer video sequence comprising multiple layers
of pictures;

selecting, for the current picture belonging to the layer
other than the highest layer, a value sps_max_num_re-
order_pics[HighestTid], wherein HighestTid specifies
said highest layer, and said value sps_max_num_reor-
der_pics[HighestTid] is derived from a syntax element
associated with said highest layer, each layer i of said
multiple layers has an associated syntax element defin-
ing a respective value sps_max_num_reorder_pics|i],
and said value sps_max_num_reorder_pics[i] indicates
amaximum allowed number of pictures that can precede
any picture in said multi-layer video sequence in decod-
ing order and follow that picture in output order when
HighestTid is equal to i;

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid];

outputting a picture, which is a first picture in output order
of said pictures in said decoded picture buffer that are
marked as needed for output, if said number of pictures
in said decoded picture buffer that are marked as needed
for output is greater than said value sps_max_num_re-
order_pics[HighestTid]; and

US 9,407,932 B2

37

marking said picture as not needed for output if said num-
ber of pictures in said decoded picture buffer that are
marked as needed for output is greater than said value
sps_max_num_reorder_pics[HighestTid].

2. The method according to claim 1, further comprising:

parsing a slice header of said current picture to be decoded

of said multi-layer video sequence;

determining a reference picture set for said current picture

based on said parsed slice header;

marking all pictures in said decoded picture buffer that are

not present in said reference picture set as unused for
reference;

outputting zero, one or many pictures, marked as needed

for output, of said pictures in said decoded picture buffer
and marking said zero, one or many pictures as not
needed for output;
emptying, from said decoded picture buffer, any picture
marked as unused for reference and not needed for out-
put of said pictures in said decoded picture buffer; and

decoding said current picture, wherein determining said
number of pictures, comparing said number, outputting
said picture and marking said picture are performed after
decoding said current picture.

3. The method according to claim 1, wherein

outputting said picture comprises outputting a picture in

said decoded picture buffer with a smallest value of
PicOrderCntVal of all pictures in said decoded picture
buffer that are marked as needed for output if said num-
ber of pictures in said decoded picture buffer that are
marked as needed for output is greater than said value
sps_max_num_reorder_pics[HighestTid], wherein
PicOrderCntVal represents a picture order count value.

4. The method according to claim 1, wherein outputting
said picture comprises outputting a picture with smallest pic-
ture order count value of said pictures in said decoded picture
buffer that are marked as needed for output if said number of
pictures in said decoded picture buffer that are marked as
needed for output is greater than said value sps_max_
num_reorder_pics|HighestTid].

5. The method according to claim 1, wherein outputting
said picture is performed before parsing a slice header of a
next picture to be decoded of said multi-layer video sequence.

6. The method according to claim 1, wherein the selecting
the value sps_max_num_reorder_pics[HighestTid] is per-
formed responsive to the determining, after the current pic-
ture has been decoded and stored in the decoded picture
buffer, the number of pictures in said decoded picture buffer
that are marked as needed for output, said current picture
belonging to the layer other than a highest layer that is
decoded by said decoder of the multi-layer video sequence
comprising multiple layers of pictures.

7. A method performed by a decoder, said method com-
prises:

parsing a slice header of a current picture to be decoded of

amulti-layer video sequence comprising multiple layers
of pictures, said current picture belonging to a layer
other than a highest layer that is decoded by said decoder
of said multi-layer video sequence;

determining a reference picture set for said current picture

based on said parsed slice header;

marking all pictures in a decoded picture buffer that are not

present in said reference picture set as unused for refer-
ence;

outputting zero, one or many pictures, marked as needed

for output, of said pictures in said decoded picture buffer
and marking said zero, one or many pictures as not
needed for output;

20

25

30

40

45

60

38

emptying any picture, from said decoded picture buffer,
marked as unused for reference and not needed for out-
put of said pictures in said decoded picture buffer;

decoding said current picture;

determining a number of pictures in said decoded picture
buffer that are marked as needed for output;

selecting, for the current picture belonging to the layer
other than the highest layer, a value sps_max_num_re-
order_pics[HighestTid], wherein HighestTid specifies
said highest layer, and said value sps_max_num_reor-
der_pics[HighestTid] is derived from a syntax element
associated with said highest layer, each layer i of said
multiple layers has an associated syntax element defin-
ing a respective value sps_max_num_reorder_pics|i],
and said value sps_max_num_reorder_pics[i] indicates
amaximum allowed number of pictures that can precede
any picture in said multi-layer video sequence in decod-
ing order and follow that picture in output order when
HighestTid is equal to i;

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid];

outputting a picture, which is a first picture in output order,
of said pictures in said decoded picture buffer that are
marked as needed for output if said number of pictures in
said decoded picture buffer that are marked as needed
for output is greater than said value sps_max_num_re-
order_pics[HighestTid]; and

marking said picture as not needed for output if said num-
ber of pictures in said decoded picture buffer that are
marked as needed for output is greater than said value
sps_max_num_reorder_pics[HighestTid], wherein
determining said number of pictures, comparing said
number, outputting said picture and marking said picture
are performed after decoding said current picture.

8. The method according to claim 7, further comprising:

storing said decoded current picture in said decoded pic-
ture buffer; and

marking said decoded current picture as needed for output
or as not needed for output, wherein determining said
number of pictures is performed after marking said
decoded current picture.

9. A decoder comprising:

a processor; and

a memory coupled to the processor and comprising com-
puter readable program code that when executed by the
processor causes the processor to perform operations
comprising:

determining, after a current picture of a bitstream repre-
senting pictures of a multi-layer video sequence com-
prising multiple layers of pictures has been decoded and
stored in a decoded picture buffer, a number of pictures
in said decoded picture buffer that are marked as needed
for output, said current picture belonging to a layer other
than a highest layer that is decoded by said decoder of
said multi-layer video sequence;

selecting, for the current picture belonging to the layer
other than the highest layer, a value sps_max_num_re-
order_pics[HighestTid], wherein HighestTid specifies
said highest layer, and said value sps_max_num_reor-
der_pics[HighestTid] is derived from a syntax element
associated with said highest layer each layer i of said
multiple layers has an associated syntax element defin-
ing a respective value sps_max_num_reorder_pics|i],
and said value sps_max_num_reorder_pics[i] indicates
amaximum allowed number of pictures that can precede

US 9,407,932 B2

39

any picture in said multi-layer video sequence in decod-
ing order and follow that picture in output order when
HighestTid is equal to i;

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid];

outputting a picture, which is a first picture in output order,
of said pictures in said decoded picture buffer that are
marked as needed for output if said number of pictures in
said decoded picture buffer that are marked as needed
for output is greater than said value sps_max_num_re-
order_pics[HighestTid]; and

marking said picture as not needed for output if said num-

ber of pictures in said decoded picture buffer that are
marked as needed for output is greater than said value
sps_max_num_reorder_pics[HighestTid].

10. The decoder according to claim 9, wherein the proces-
sor is configured to further perform operations comprising:

receiving said bitstream representing pictures of said

multi-layer video sequence and store said bitstream in a
connected memory comprising said decoded picture
buffer;

determining, after said current picture has been decoded

and stored in said decoded picture buffer, said number of
pictures in said decoded picture buffer that are marked as
needed for output;

comparing said number of pictures in said decoded picture

buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid];
outputting said picture, which is a first picture in output
order, of said pictures in said decoded picture buffer that
are marked as needed for output if said number of pic-
tures in said decoded picture buffer that are marked as
needed for output is greater than said value sps_
max_num_reorder_pics[HighestTid]; and
marking said picture as not needed for output if said num-
ber of pictures in said decoded picture buffer that are
marked as needed for output is greater than said value
sps_max_num_reorder_pics[HighestTid].

11. The decoder according to claim 9, wherein the proces-
sor is configured to further perform operations comprising:

determining, after said current picture has been decoded

and stored in said decoded picture buffer, said number of
pictures in said decoded picture buffer that are marked as
needed for output;
selecting said value sps_max_num_reorder_pics[Highest-
Tid];

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid];

outputting said picture, which is a first picture in output
order, of said pictures in said decoded picture buffer that
are marked as needed for output if said number of pic-
tures in said decoded picture buffer that are marked as
needed for output is greater than said value sps_
max_num_reorder_pics[HighestTid]; and

marking said picture as not needed for output if said num-

ber of pictures in said decoded picture buffer that are
marked as needed for output is greater than said value
sps_max_num_reorder_pics[HighestTid].

12. The decoder according to claim 11, wherein said pro-
cessor is further configured to perform operations compris-
ing:

parsing a slice header of said current picture to be decoded

of said multi-layer video sequence;

determining a reference picture set for said current picture

based on said parsed slice header;

10

20

25

30

35

40

45

50

55

60

65

40

marking all pictures in said decoded picture butfer that are
not present in said reference picture set as unused for
reference;

outputting zero, one or many pictures, marked as needed

for output, of said pictures in said decoded picture buffer
and mark said zero, one or many pictures as not needed
for output;
emptying, from said decoded picture buffer, any picture
marked as unused for reference and not needed for out-
put of said pictures in said decoded picture buffer; and

decoding said current picture, wherein said processor is
configured to determine said number of pictures, com-
pare said number, output said picture and mark said
picture after decoding said current picture.

13. The decoder according to claim 11, wherein said pro-
cessor is further configured to perform operations compris-
ing:

outputting a picture in said decoded picture buffer with a

smallest value of PicOrderCntVal of all pictures in said
decoded picture buffer that are marked as needed for
output if said number of pictures in said decoded picture
buffer that are marked as needed for output is greater
than said value sps_max_num_reorder_pics[Highest-
Tid], wherein PicOrderCntVal represents a picture order
count value.

14. The decoder according to claim 11, wherein said pro-
cessor is further configured to perform operations compris-
ing:

outputting a picture with smallest picture order count value

of said pictures in said decoded picture buffer that are
marked as needed for output if said number of pictures in
said decoded picture buffer that are marked as needed
for output is greater than said value sps_max_num_re-
order_pics[HighestTid].

15. The decoder according to claim 11, wherein said pro-
cessor is further configured to perform operations compris-
ing:

outputting said picture before parsing a slice header of a

next picture to be decoded of said multi-layer video
sequence.

16. The decoder according to claim 9, wherein said decoder
is a High Efficiency Video Coding, HEVC, compliant
decoder.

17. A mobile terminal comprising a decoder according to
claim 9.

18. A network node comprising a decoder according to
claim 9.

19. A decoder comprising:

a processor; and

a memory coupled to the processor and comprising com-

puter readable program code that when executed by the
processor causes the processor to perform operations
comprising:

parsing a slice header of a current picture to be decoded of

a bitstream representing pictures of a multi-layer video
sequence comprising multiple layers of pictures, said
current picture belonging to a layer other than a highest
layer that is decoded by said decoder of said multi-layer
video sequence;

determining a reference picture set for said current picture

based on said parsed slice header;

marking all pictures in a decoded picture buffer that are not

present in said reference picture set as unused for refer-
ence;

US 9,407,932 B2

41

outputting zero, one or many pictures, marked as needed
for output, of said pictures in said decoded picture buffer
and mark said zero, one or many pictures as not needed
for output;

emptying, from said decoded picture buffer, any picture
marked as unused for reference and not needed for out-
put of said pictures in said decoded picture buffer;

decoding said current picture;

determining a number of pictures in said decoded picture
buffer that are marked as needed for output;

selecting, for the current picture belonging to the layer
other than the highest layer, a value sps_max_num_re-
order_pics[HighestTid], wherein HighestTid specifies
said highest layer, and said value sps_max_num_reor-
der_pics[HighestTid] is derived from a syntax element
associated with said highest layer, each layer i of said
multiple layers has an associated syntax element defin-
ing a respective value sps_max_num_reorder_pics][i],
and said value sps_max_num_reorder_pics[i] indicates
amaximum allowed number of pictures that can precede
any picture in said multi-layer video sequence in decod-
ing order and follow that picture in output order when
HighestTid is equal to i;

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid];

outputting a picture, which is a first picture in output order,
of said pictures in said decoded picture buffer that are
marked as needed for output if said number of pictures in
said decoded picture buffer that are marked as needed
for output is greater than said value sps_max_num_re-
order_pics[HighestTid]; and

marking said picture as not needed for output if said num-
ber of pictures in said decoded picture buffer that are
marked as needed for output is greater than said value
sps_max_num_reorder_pics[HighestTid], wherein said
decoder is configured to determine said number of pic-
tures, compare said number, output said picture and
mark said picture after decoding said current picture.

20. The decoder according to claim 19, wherein the pro-

cessor is configured to further perform operations compris-
ing:

receiving said bitstream representing pictures of said
multi-layer video sequence and store said bitstream in a
connected memory comprising said decoded picture
buffer;

parsing said slice header of said current picture to be
decoded of said multi-layer video sequence;

determining said reference picture set for said current pic-
ture based on said parsed slice header;

marking said all pictures in said decoded picture buffer that
are not present in said reference picture set as unused for
reference;

outputting zero, one or many pictures, marked as needed
for output, of said pictures in said decoded picture
buffer, wherein said marking unit is configured to mark
said zero, one or many pictures as not needed for output;

emptying, from said decoded picture buffer, said any pic-
ture marked as unused for reference and not needed for
output of said pictures in said decoded picture buffer;

decoding said current picture;

determining said number of pictures in said decoded pic-
ture buffer that are marked as needed for output; and

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid],
wherein

10

15

42

outputting said picture, which is a first picture in output
order, of said pictures in said decoded picture buffer that
are marked as needed for output if said number of pic-
tures in said decoded picture buffer that are marked as
needed for output is greater than said value sps_
max_num_reorder_pics[HighestTid]; and

marking said picture as not needed for output if said num-
ber of pictures in said decoded picture buffer that are
marked as needed for output is greater than said value
sps_max_num_reorder_pics[HighestTid], wherein said
number determining unit is configured to determine said
number of pictures, said comparator is configured to
compare said number, said output unit is configured to
output said picture and said marking unit is configured to
mark said picture after said decoding unit has decoded
said current picture.

21. The decoder according to claim 19, wherein the pro-

cessor is configured to further perform operations compris-

20 ing:

25

30

35

40

45

50

55

60

65

parsing said slice header of said current picture;

determining said reference picture set for said current pic-
ture based on said parsed slice header;

marking said all pictures in said decoded picture butfer that
are not present in said reference picture set as unused for
reference;

outputting zero, one or many pictures, marked as needed
for output, of said pictures in said decoded picture buffer
and mark said zero, one or many pictures as not needed
for output;

emptying, from said decoded picture buffer, said any pic-
ture marked as unused for reference and not needed for
output of said pictures in said decoded picture buffer;

decoding said current picture;

determining said number of pictures in said decoded pic-
ture buffer that are marked as needed for output;

selecting said value sps_max_num_reorder_pics[Highest-
Tid];

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid];

outputting said picture, which is a first picture in output
order, of said pictures in said decoded picture buffer that
are marked as needed for output if said number of pic-
tures in said decoded picture buffer that are marked as
needed for output is greater than said value sps_
max_num_reorder_pics[HighestTid]; and

marking said picture as not needed for output if said num-
ber of pictures in said decoded picture buffer that are
marked as needed for output is greater than said value
sps_max_num_reorder_pics[HighestTid], wherein said
processor is configured to determine said number of
pictures, compare said number, output said picture and
mark said picture after decoding said current picture.

22. The decoder according to claim 19, wherein said pro-

cessor is further configured to perform operations compris-
ing:

storing said decoded current picture in said decoded pic-
ture buffer; and

marking said decoded current picture as needed for output
or as not needed for output.

23. A method performed by an encoder, said method com-

prising:

determining, after a current picture has been decoded and
stored in a decoded picture buffer, a number of pictures
in said decoded picture buffer that are marked as needed
for output, said current picture belonging to a layer other

US 9,407,932 B2

43

a highest layer that is decoded by said encoder of a
multi-layer video sequence comprising multiple layers
of pictures;

selecting, for the current picture belonging to the layer
other than the highest layer, a value sps_max_num_re-
order_pics[HighestTid], wherein HighestTid specifies
said highest layer, each layer i of said multiple layers has
an associated value sps_max_num_reorder_pics[i], and
said value sps_max_num_reorder_pics[i] indicates a
maximum allowed number of pictures that can precede
any picture in said multi-layer video sequence in decod-
ing order and follow that picture in output order when
HighestTid is equal to i;

comparing said of pictures in said decoded picture buffer
that are marked as needed for output number against said
value sps_max_num_reorder_pics[HighestTid]; and

marking a picture, which is a first picture in output order, of
said pictures in said decoded picture buffer that are
marked as needed for output as not needed for output if
said number of pictures in said decoded picture buffer
that are marked as needed for output is greater than said
value sps_max_num_reorder_pics[HighestTid].

24. A method performed by an encoder, said method com-

prising:

marking all pictures in a decoded picture buffer that are not
present in a reference picture set for a current picture of
amulti-layer video sequence comprising multiple layers
of pictures as unused for reference, said current picture
belonging to a layer other than a highest layer that is
decoded by said encoder of said multi-layer video
sequence;

marking zero, one or many pictures, marked as needed for
output, of said pictures in said decoded picture buffer as
not needed for output;

emptying, from said decoded picture buffer, any picture
marked as unused for reference and not needed for out-
put of said pictures in said decoded picture buffer;

decoding said current picture;

determining a number of pictures in said decoded picture
buffer that are marked as needed for output;

selecting, for the current picture belonging to the layer
other than the highest layer, a value sps_max_num_re-
order_pics[HighestTid], wherein HighestTid specifies
said highest layer, each layer i of said multiple layers has
an associated value sps_max_num_reorder_pics[i], and
said value sps_max_num_reorder_pics[i] indicates a
maximum allowed number of pictures that can precede
any picture in said multi-layer video sequence in decod-
ing order and follow that picture in output order when
HighestTid is equal to i;

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid]; and

marking a picture, which is a first picture in output order, of
said pictures in said decoded picture buffer that are
marked as needed for output as not needed for output if
said number of pictures in said decoded picture buffer
that are marked as needed for output is greater than said
value sps_max_num_reorder_pics[HighestTid],
wherein determining said number of pictures, compar-
ing said number and marking said picture are performed
after decoding said current picture.

10

15

20

25

30

35

40

45

55

60

65

44

25. An encoder comprising:

a processor; and

a memory coupled to the processor and comprising com-
puter readable program code that when executed by the
processor causes the processor to perform operations
comprising:

determining, after a current picture has been decoded and
stored in a decoded picture buffer, a number of pictures
in said decoded picture buffer that are marked as needed
for output, said current picture belonging to a layer other
a highest layer that is decoded by said encoder of a
multi-layer video sequence comprising multiple layers
of pictures;

selecting, for the current picture belonging to the layer
other than the highest layer, a value sps_max_num_re-
order_pics[HighestTid], wherein HighestTid specifies
said highest layer, each layer i of said multiple layers has
an associated value sps_max_num_reorder_pics|[i], and
said value sps_max_num_reorder_pics[i] indicates a
maximum allowed number of pictures that can precede
any picture in said multi-layer video sequence in decod-
ing order and follow that picture in output order when
HighestTid is equal to i;

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid]; and

marking a picture, which is a first picture in output order, of
said pictures in said decoded picture buffer that are
marked as needed for output as not needed for output if
said number of pictures in said decoded picture buffer
that are marked as needed for output is greater than said
value sps_max_num_reorder_pics[HighestTid].

26. The encoder according to claim 25, wherein said pro-

cessor is further configured to perform operations compris-
ing:

determining, after said current picture has been decoded
and stored in said decoded picture butfer, said number of
pictures in said decoded picture buffer that are marked as
needed for output;

selecting said value sps_max_num_reorder_pics[Highest-
Tid];

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid]; and

marking said picture, which is a first picture in output
order, of said pictures in said decoded picture buffer that
are marked as needed for output as not needed for output
if said number of pictures in said decoded picture buffer
that are marked as needed for output is greater than said
value sps_max_num_reorder_pics[HighestTid].

27. The encoder according to claim 25, wherein said pro-

cessor is further configured to perform comprising:

determining, after said current picture of said multi-layer
video sequence has been decoded and stored in said
decoded picture buffer, said number of pictures in said
decoded picture buffer that are marked as needed for
output;

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid]; and

marking said picture, which is a first picture in output
order, of said pictures in said decoded picture buffer that
are marked as needed for output as not needed for output
if said number of pictures in said decoded picture buffer
that are marked as needed for output is greater than said
value sps_max_num_reorder_pics[HighestTid].

US 9,407,932 B2

45

28. The encoder according to claim 25, wherein said

encoder is a High Efficiency Video Coding, HEVC, compli-
ant encoder.

29. An encoder comprising:

a processor; and

a memory coupled to the processor and comprising com-
puter readable program code that when executed by the
processor causes the processor to perform operations
comprising:

marking all pictures in a decoded picture buffer that are not
present in a reference picture set for a current picture of
amulti-layer video sequence comprising multiple layers
of pictures as unused for reference, said current picture
belonging to a layer other than a highest layer that is
decoded by said encoder of said multi-layer video
sequence;

marking zero, one or many pictures, marked as needed for
output, of said pictures in said decoded picture buffer as
not needed for output;

emptying, from said decoded picture buffer, any picture
marked as unused for reference and not needed for out-
put of said pictures in said decoded picture buffer;

decoding said current picture;

determining a number of pictures in said decoded picture
buffer that are marked as needed for output;

selecting, for the current picture belonging to the layer
other than the highest layer, a value sps_max_num_re-
order_pics[HighestTid], wherein HighestTid specifies
said highest layer, each layer i of said multiple layers has
an associated value sps_max_num_reorder_pics[i], and
said value sps_max_num_reorder_pics[i] indicates a
maximum allowed number of pictures that can precede
any picture in said multi-layer video sequence in decod-
ing order and follow that picture in output order when
HighestTid is equal to i;

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid]; and

marking a picture, which is a first picture in output order, of
said pictures in said decoded picture buffer that are
marked as needed for output as not needed for output if
said number of pictures in said decoded picture buffer
that are marked as needed for output is greater than said
value sps_max_num_reorder_pics[HighestTid],
wherein said encoder is configured to determine said
number of pictures, compare said number and mark said
picture are performed after decoding said current pic-
ture.

30. The encoder according to claim 29, wherein said pro-

cessor is further configured to perform operations compris-

ing:

marking said all pictures in said decoded picture buffer that
are not present in said reference picture set for said
current picture of said multi-layer video sequence as
unused for reference;

marking zero, one or many pictures, marked as needed for
output, of said pictures in said decoded picture buffer as
not needed for output;

emptying, from said decoded picture buffer, said any pic-
ture marked as unused for reference and not needed for
output of said pictures in said decoded picture buffer;

decoding said current picture;

determining said number of pictures in said decoded pic-
ture buffer that are marked as needed for output;

selecting said value sps_max_num_reorder_pics[Highest-
Tid];

20

40

45

50

55

46

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid]; and

marking said picture, which is a first picture in output
order, of said pictures in said decoded picture buffer that
are marked as needed for output as not needed for output
if said number of pictures in said decoded picture buffer
that are marked as needed for output is greater than said
value sps_max_num_reorder_pics[HighestTid],
wherein said processor is configured to determine said
number of pictures, compare said number and mark said
picture after decoding said current picture.

31. The encoder according to claim 29, wherein said pro-

cessor is further configured to perform operations compris-
ing:

marking said all pictures in said decoded picture butfer that
are not present in said reference picture set for said
current picture of said multi-layer video sequence as
unused for reference

marking zero, one or many pictures, marked as needed for
output, of said pictures in said decoded picture buftfer as
not needed for output;

emptying, from said decoded picture buffer, said any pic-
ture marked as unused for reference and not needed for
output of said pictures in said decoded picture buffer;

decoding said current picture;

determining said number of pictures in said decoded pic-
ture buffer that are marked as needed for output;

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against said
value sps_max_num_reorder_pics[HighestTid];

marking said picture, which is a first picture in output
order, of said pictures in said decoded picture buffer that
are marked as needed for output as not needed for output
if said number of pictures in said decoded picture buffer
that are marked as needed for output is greater than said
value sps_max_num_reorder_pics[HighestTid]; and

determining said number of pictures, said comparator is
configured to compare said number and said marking
unit is configured to mark said picture after said decod-
ing unit has decoded said current picture.

32. A decoder comprising:

a processor; and

a memory coupled to the processor and comprising com-
puter readable program code that when executed by the
processor causes the processor to perform operations
comprising:

determining, after a current picture of a bitstream repre-
senting pictures of a multi-layer video sequence com-
prising multiple layers of pictures has been decoded and
stored in a decoded picture buffer, a number of pictures
in said decoded picture buffer that are marked as needed
for output, said current picture belonging to a layer other
than a highest layer that is decoded by said decoder of
said multi-layer video sequence;

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against a
value sps_max_num_reorder_pics[HighestTid] for the
current picture belonging to the layer other than the
highest layer, wherein HighestTid specifies said highest
layer, and said value sps_max_num_reorder_pics[High-
estTid] is derived from a syntax element associated with
said highest layer, each layer i of said multiple layers has
an associated syntax element defining a respective value
sps_max_num_reorder_pics[i], and said value
sps_max_num_reorder_pics[i] indicates a maximum
allowed number of pictures that can precede any picture

US 9,407,932 B2

47

in said multi-layer video sequence in decoding order and
follow that picture in output order when HighestTid is
equal to 1;

outputting a picture, which is a first picture in output order,
of said pictures in said decoded picture buffer that are
marked as needed for output if said number of pictures in
said decoded picture buffer that are marked as needed
for output is greater than said value sps_max_num_re-
order_pics[HighestTid]; and

marking said picture as not needed for output if said num-
ber of pictures in said decoded picture buffer that are
marked as needed for output is greater than said value
sps_max_num_reorder_pics[HighestTid].

33. A decoder comprising:

a processor; and

a memory coupled to the processor and comprising com-
puter readable program code that when executed by the
processor causes the processor to perform operations
comprising:

parsing a slice header of a current picture to be decoded of
a bitstream representing pictures of a multi-layer video
sequence comprising multiple layers of pictures, said
current picture belonging to a layer other than a highest
layer that is decoded by said decoder of said multi-layer
video sequence;

determining a reference picture set for said current picture
based on said parsed slice header;

marking all pictures in a decoded picture buffer that are not
present in said reference picture set as unused for refer-
ence;

outputting zero, one or many pictures, marked as needed
for output, of said pictures in said decoded picture
buffer, wherein said marking module further marking
said zero, one or many pictures as not needed for output;

emptying, from said decoded picture buffer, any picture
marked as unused for reference and not needed for out-
put of said pictures in said decoded picture buffer;

decoding said current picture;

determining a number of pictures in said decoded picture
buffer that are marked as needed for output; and

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against a
value sps_max_num_reorder_pics[HighestTid] for the
current picture belonging to the layer other than the
highest layer, wherein HighestTid specifies said highest
layer, and said value sps_max_num_reorder_pics[High-
estTid] is derived from a syntax element associated with
said highest layer, each layer i of said multiple layers has
an associated syntax element defining a respective value
sps_max_num_reorder_pics[i], and said sps_
max_num_reorder_pics[i] indicates a maximum
allowed number of pictures that can precede any picture
in said multi-layer video sequence in decoding order and
follow that picture in output order when HighestTid is
equal to i,

outputting a picture, which is a first picture in output order,
of said pictures in said decoded picture buffer that are
marked as needed for output if said number of pictures in
said decoded picture buffer that are marked as needed
for output is greater than said value sps_max_num_re-
order_pics[HighestTid], and

marking said picture as not needed for output if said num-
ber of pictures in said decoded picture buffer that are
marked as needed for output is greater than said value
sps_max_num_reorder_pics[HighestTid], wherein said
number determining module determining said number
of pictures, said comparing module comparing said

15

25

30

40

45

55

48

number, said outputting module outputting said picture
and said marking module marking said picture after said
decoding module decoding said current picture.

34. An encoder comprising:

a processor; and

a memory coupled to the processor and comprising com-
puter readable program code that when executed by the
processor causes the processor to perform operations
comprising:

determining, after a current picture has been decoded and
stored in a decoded picture buffer, a number of pictures
in said decoded picture buffer that are marked as needed
for output, said current picture belonging to a layer other
than a highest layer that is decoded by said encoder of a
multi-layer video sequence comprising multiple layers
of pictures;

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against a
value sps_max_num_reorder_pics[HighestTid] for the
current picture belonging to the layer other than the
highest layer, wherein HighestTid specifies said highest
layer, each layer i of said multiple layers has an associ-
ated syntax element defining a respective value
sps_max_num_reorder_pics[i], and said value
sps_max_num_reorder_pics[i] indicates a maximum
allowed number of pictures that can precede any picture
in said multi-layer video sequence in decoding order and
follow that picture in output order when HighestTid is
equal to i; and

marking a picture, which is a first picture in output order, of
said pictures in said decoded picture buffer that are
marked as needed for output as not needed for output if
said number of pictures in said decoded picture buffer
that are marked as needed for output is greater than said
value sps_max_num_reorder_pics[HighestTid].

35. An encoder comprising:

a processor; and

a memory coupled to the processor and comprising com-
puter readable program code that when executed by the
processor causes the processor to perform operations
comprising:

marking all pictures in a decoded picture buffer that are not
present in a reference picture set for a current picture of
amulti-layer video sequence comprising multiple layers
of pictures as unused for reference and marking zero,
one or many pictures, marked as needed for output, of
said pictures in said decoded picture buffer as not needed
for output, said current picture belonging to a layer other
than a highest layer that is decoded by said encoder of
said multi-layer video sequence;

emptying, from said decoded picture buffer, any picture
marked as unused for reference and not needed for out-
put of said pictures in said decoded picture buffer;

decoding said current picture;

determining a number of pictures in said decoded picture
buffer that are marked as needed for output;

comparing said number of pictures in said decoded picture
buffer that are marked as needed for output against a
value sps_max_num_reorder_pics[HighestTid] for the
current picture belonging to the layer other than the
highest layer, wherein HighestTid specifies said highest
layer, each layer i of said multiple layers has an associ-
ated syntax element defining a respective value
sps_max_num_reorder_pics[i], and said value
sps_max_num_reorder_pics[i] indicates a maximum
allowed number of pictures that can precede any picture

US 9,407,932 B2
49

in said video sequence in decoding order and follow that
picture in output order when HighestTid is equal to i; and

marking a picture, which is a first picture in output order, of
said pictures in said decoded picture buffer that are
marked as needed for output as not needed for output if 5
said number of pictures in said decoded picture buffer
that are marked as needed for output is greater than said
value sps_max_num_reorder_pics[HighestTid],

where the determining said number of pictures, the com-
paring said number and the marking said picture are 10
performed after the decoding said current picture.

#* #* #* #* #*

50

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,407,932 B2 Page 1of3
APPLICATION NO. : 14/116071

DATED - August 2, 2016

INVENTOR(S) : Samuelsson et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page, in item (54), in “title”, in Column 1, Line 2, delete “OF A” and insert -- IN A --,
therefor.

On the Title Page, in item (74), under “Attorney, Agent, or Firm”, in Column 2, Line 1,
delete “Myers Bigel & Sibley, P.A.” and insert -- Myers Bigel Sibley & Sajovec, P.A. --, therefor.

On Page 2, in item (56), under “OTHER PUBLICATIONS”, in Column 2, Line 30, delete “Shaghai,”
and insert -- Shanghai, --, therefor.

In the Drawings

In Fig. 21, Sheet 11 of 16, for Step “S617, in Line 4, delete “PICS[HIGHESTID]” and
insert -- PICS[HIGHESTTID] --, therefor.

In Fig. 30, Sheet 16 of 16, delete “10” and insert -- 10 --, therefor.

In the Specification

In Column 1, Line 2, delete “OF A” and insert -- IN A --, therefor.

In Column 3, Line 27, delete “(ITU-T),” and insert -- (ITU-T). --, therefor.

In Column 8, Line 67, delete “which;” and insert -- which: --, therefor.

In Column 10, Line 46, delete “(0y;, or 1y,;,),” and insert -- (O, or 1y,;,) --, therefor.
In Column 11, Line 49, delete “layers™ and insert -- layers --, therefor.

In Column 15, Line 32, delete “bitstream,” and insert -- bitstream. --, therefor.

Signed and Sealed this
Twenty-second Day of November, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 3
U.S. Pat. No. 9,407,932 B2

In the Specification

In Column 18, Line 60, delete “parsed,” and insert -- parsed. --, therefor.

In Column 18, Line 61, delete “done,” and insert -- done. --, therefor.

In Column 18, Line 64, delete “decoded,” and insert -- decoded. --, therefor.

In Column 19, Line 2, delete “bitstream,” and insert -- bitstream. --, therefor.

In Column 19, Line 10, delete “decoded” and insert -- decoded. --, therefor.

In Column 19, Line 29, delete “bitstream,” and insert -- bitstream. --, therefor.

In Column 19, Line 55, delete “CPB.” and insert -- DPB. --, therefor.

In Column 19, Line 59, delete “applies,” and insert -- applies. --, therefor.

In Column 20, Line 19, delete “CPB.” and insert -- DPB. --, therefor.

In Column 21, Line 18, delete “CPB” and insert -- DPB --, therefor.

In Column 21, Line 50, delete “0,” and insert -- 0. --, therefor.

In Column 21, Line 55, delete “CPB” and insert -- DPB --, therefor.

In Column 22, Line 29, delete “HighesTId™ and insert -- HighestTId --, therefor.

In Column 22, Line 41, delete “HighesTid” and insert -- HighestTid --, therefor.

In Column 24, Line 65, delete “are,” and insert -- are --, therefor.

In Column 26, Line 27, delete “[HighesTid].” and insert -- [HighestTid]. --, therefor.
In Column 26, Line 42, delete “[HighesTid]” and insert -- [HighestTid] --, therefor.
In Column 27, Line 64, delete “[HighesTid].” and insert -- [HighestTid]. --, therefor.
In Column 30, Line 51, delete “picture” and insert -- A picture --, therefor.

In Column 31, Line 3, delete “encoded” and insert -- encoded. --, therefor.

In Column 31, Line 61, delete “23,” and insert -- 23. --, therefor.

In Column 34. Line 20. delete “[HighesTidl.” and insert -- [HichestTid]. --. therefor.

CERTIFICATE OF CORRECTION (continued) Page 3 of 3
U.S. Pat. No. 9,407,932 B2

In the Claims

In Column 42, Line 67, in Claim 23, delete “other” and insert -- other than --, therefor.

In Column 43, Line 15, in Claim 23, delete “of” and insert -- number of --, therefor.

In Column 44, Line 10, in Claim 25, delete “other” and insert -- other than --, therefor.

In Column 44, Line 53, in Claim 27, delete “perform™ and insert -- perform operations --, therefor.

In Column 46, Line 19, in Claim 31, delete “reference” and insert -- reference; --, therefor.

